Skip to main content

Advertisement

Log in

A review on the genetic polymorphisms and susceptibility of cancer patients in Bangladesh

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is one of the major health burdens worldwide, and genetic polymorphisms in individuals are closely associated with cancer susceptibility. Like in many other developing countries, the risk of cancer is increasing among Bangladeshi population. Genetic polymorphisms in xenobiotic metabolic enzymes (CYP1A1, CYP2A6, CYP3A4, CYP3A5, NAT2, SULT1A), cell cycle regulatory proteins (TP53, HER2, MDM2, miR-218-2, TGFB), cell signaling protein (CDH1), DNA repair proteins (BRCA1, BRCA2, EXO1, RAD51, XRCC2, ECCR1, ERCC4, XPC, ERCC2), and others (HLA-DRB1, INSIG2, GCNT1P5) have been found to be associated with various cancers like cancers of breast, bladder, cervix, colon, lung, prostate, etc. in different studies with Bangladeshi population. In this review article, we have discussed these gene polymorphisms associated with cancers in the Bangladeshi population, and also made a comparison with other ethnic groups. This will probably be helpful in understanding drug effects, drug resistance, and personalized medicine in the population of this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71 (3):209–249. doi:https://doi.org/10.3322/caac.21660

  2. Hussain SA, Sullivan R (2013) Cancer control in Bangladesh. Jpn J Clin Oncol 43(12):1159–1169. doi:https://doi.org/10.1093/jjco/hyt140

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kou T, Kanai M, Matsumoto S, Okuno Y, Muto M (2016) The possibility of clinical sequencing in the management of cancer. Jpn J Clin Oncol 46(5):399–406. doi:https://doi.org/10.1093/jjco/hyw018

    Article  PubMed  Google Scholar 

  4. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10):e254. doi:https://doi.org/10.1371/journal.pbio.0050254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18(R2):R163–168. doi:https://doi.org/10.1093/hmg/ddp396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan H (2017) The association between gene SNPs and cancer predisposition: Correlation or causality? EBioMedicine 16:8–9. doi:https://doi.org/10.1016/j.ebiom.2017.01.047

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rahman MH, Arslan MI, Chen Y, Ali S, Parvin T, Wang LW, Santella RM, Ahsan H (2003) Polycyclic aromatic hydrocarbon-DNA adducts among rickshaw drivers in Dhaka City, Bangladesh. Int Arch Occup Environ Health 76(7):533–538. doi:https://doi.org/10.1007/s00420-003-0431-z

    Article  CAS  PubMed  Google Scholar 

  8. Hecht SS, Stepanov I, Carmella SG (2016) Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines. Acc Chem Res 49(1):106–114. doi:https://doi.org/10.1021/acs.accounts.5b00472

    Article  CAS  PubMed  Google Scholar 

  9. Xue J, Yang S, Seng S (2014) Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers (Basel) 6(2):1138–1156. doi:https://doi.org/10.3390/cancers6021138

    Article  CAS  Google Scholar 

  10. Dutkiewicz Z, Mikstacka R (2018) Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors. Bioinorg Chem Appl 2018:3924608. doi:https://doi.org/10.1155/2018/3924608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bag A, Jyala NS, Bag N (2015) Cytochrome P450 1A1 genetic polymorphisms as cancer biomarkers. Indian J Cancer 52(4):479–489. doi:https://doi.org/10.4103/0019-509x.178380

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Li Z, Niu X, Ye X, Yu Y, Lu S, Chen Z (2011) The effect of CYP1A1 polymorphisms on the risk of lung cancer: a global meta-analysis based on 71 case-control studies. Mutagenesis 26(3):437–446. doi:https://doi.org/10.1093/mutage/ger002

    Article  CAS  PubMed  Google Scholar 

  13. Siddarth M, Datta SK, Ahmed RS, Banerjee BD, Kalra OP, Tripathi AK (2013) Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study. Environ Toxicol Pharmacol 36(1):164–170. doi:https://doi.org/10.1016/j.etap.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  14. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Li HL, Tian XP, Dong JH, Zhang L, Xu J, Shi W, Ma TY (2011) CYP1A1 Ile462Val polymorphism and susceptibility to lung cancer: a meta-analysis based on 32 studies. Eur J Cancer Prev 20(6):445–452. doi:https://doi.org/10.1097/CEJ.0b013e328345f937

    Article  CAS  PubMed  Google Scholar 

  15. Hoidy WH, Jaber FA, Al-Askari MA (2019) Association of CYP1A1 rs1048943 Polymorphism with Prostate Cancer in Iraqi Men Patients. Asian Pac J Cancer Prev 20(12):3839–3842. doi:https://doi.org/10.31557/apjcp.2019.20.12.3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wright CM, Larsen JE, Colosimo ML, Barr JJ, Chen L, McLachlan RE, Yang IA, Bowman RV, Fong KM (2010) Genetic association study of CYP1A1 polymorphisms identifies risk haplotypes in nonsmall cell lung cancer. Eur Respir J 35(1):152–159. doi:https://doi.org/10.1183/09031936.00120808

    Article  CAS  PubMed  Google Scholar 

  17. Islam MS, Ahmed MU, Sayeed MS, Maruf AA, Mostofa AG, Hussain SM, Kabir Y, Daly AK, Hasnat A (2013) Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta 416:11–19. doi:https://doi.org/10.1016/j.cca.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Song N, Tan W, Xing D, Lin D (2001) CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis 22(1):11–16. doi:https://doi.org/10.1093/carcin/22.1.11

    Article  CAS  PubMed  Google Scholar 

  19. Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Kim D, Guengerich FP (2013) Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem Res Toxicol 26(4):529–537. doi:https://doi.org/10.1021/tx3004906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Ingelman-Sundberg M, Lauschke VM (2017) Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther 102(4):688–700. doi:https://doi.org/10.1002/cpt.690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tamaki Y, Arai T, Sugimura H, Sasaki T, Honda M, Muroi Y, Matsubara Y, Kanno S, Ishikawa M, Hirasawa N, Hiratsuka M (2011) Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab Pharmacokinet 26(5):516–522. doi:https://doi.org/10.2133/dmpk.dmpk-11-rg-046

    Article  CAS  PubMed  Google Scholar 

  22. Abudushataer M, Sato N, Mieno M, Sawabe M, Muramatsu M, Arai T (2020) Association of CYP2A6 gene deletion with cancers in Japanese elderly: an autopsy study. BMC Cancer 20(1):186. doi:https://doi.org/10.1186/s12885-020-6663-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johani FH, Majid MSA, Azme MH, Nawi AM (2020) Cytochrome P450 2A6 whole-gene deletion (CYP2A6*4) polymorphism reduces risk of lung cancer: A meta-analysis. Tob Induc Dis 18:50. doi:https://doi.org/10.18332/tid/122465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumondai M, Hosono H, Orikasa K, Arai Y, Arai T, Sugimura H, Ozono S, Sugiyama T, Takayama T, Sasaki T, Hirasawa N, Hiratsuka M (2016) Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers. Biol Pharm Bull 39(1):84–89. doi:https://doi.org/10.1248/bpb.b15-00604

    Article  PubMed  Google Scholar 

  25. Neunzig I, Drăgan CA, Widjaja M, Schwaninger AE, Peters FT, Maurer HH, Bureik M (2011) Whole-cell biotransformation assay for investigation of the human drug metabolizing enzyme CYP3A7. Biochim Biophys Acta 1814(1):161–167. doi:https://doi.org/10.1016/j.bbapap.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  26. Zhou LP, Yao F, Luan H, Wang YL, Dong XH, Zhou WW, Wang QH (2013) CYP3A4*1B polymorphism and cancer risk: a HuGE review and meta-analysis. Tumour Biol 34(2):649–660. doi:https://doi.org/10.1007/s13277-012-0592-z

    Article  CAS  PubMed  Google Scholar 

  27. Dally H, Edler L, Jäger B, Schmezer P, Spiegelhalder B, Dienemann H, Drings P, Schulz V, Kayser K, Bartsch H, Risch A (2003) The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 13(10):607–618. doi:https://doi.org/10.1097/00008571-200310000-00004

    Article  CAS  PubMed  Google Scholar 

  28. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391. doi:https://doi.org/10.1038/86882

    Article  CAS  PubMed  Google Scholar 

  29. Balram C, Zhou Q, Cheung YB, Lee EJ (2003) CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 59(2):123–126. doi:https://doi.org/10.1007/s00228-003-0594-2

    Article  CAS  PubMed  Google Scholar 

  30. Islam MS, Mostofa AG, Ahmed MU, Bin Sayeed MS, Hassan MR, Hasnat A (2014) Association of CYP3A4, CYP3A5 polymorphisms with lung cancer risk in Bangladeshi population. Tumour Biol 35(2):1671–1678. doi:https://doi.org/10.1007/s13277-013-1230-0

    Article  CAS  PubMed  Google Scholar 

  31. Sailaja K, Rao DN, Rao DR, Vishnupriya S (2010) Analysis of CYP3A5*3 and CYP3A5*6 gene polymorphisms in Indian chronic myeloid leukemia patients. Asian Pac J Cancer Prev 11(3):781–784

    CAS  PubMed  Google Scholar 

  32. Zheng Y, Xu Y, Zhou BY, Sun L, Yu PB, Zhang L, Xu J, Wang JJ (2018) CYP3A4*1B Polymorphism and Cancer Risk: A Meta-Analysis Based on 55 Case-control Studies. Ann Clin Lab Sci 48(4):538–545

    CAS  PubMed  Google Scholar 

  33. Hosen MB, Islam J, Salam MA, Islam MF, Hawlader MZ, Kabir Y (2015) N-acetyltransferase 2 gene polymorphism as a biomarker for susceptibility to bladder cancer in Bangladeshi population. Asia Pac J Clin Oncol 11(1):78–84. doi:https://doi.org/10.1111/ajco.12291

    Article  PubMed  Google Scholar 

  34. Mitchell SC (2020) N-acetyltransferase: the practical consequences of polymorphic activity in man. Xenobiotica 50(1):77–91. doi:https://doi.org/10.1080/00498254.2019.1618511

    Article  CAS  PubMed  Google Scholar 

  35. Tasnim T, Al-Mamun MMA, Nahid NA, Islam MR, Apu MNH, Bushra MU, Rabbi SNI, Nahar Z, Chowdhury JA, Ahmed MU, Islam MS, Hasnat A (2017) Genetic variants of SULT1A1 and XRCC1 genes and risk of lung cancer in Bangladeshi population. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 39(11):1010428317729270. doi:https://doi.org/10.1177/1010428317729270

    Article  CAS  Google Scholar 

  36. Kotnis A, Kannan S, Sarin R, Mulherkar R (2008) Case-control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk. Br J Cancer 99(8):1340–1347. doi:https://doi.org/10.1038/sj.bjc.6604683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu MT, Wang YT, Ho CK, Wu DC, Lee YC, Hsu HK, Kao EL, Lee JM (2003) SULT1A1 polymorphism and esophageal cancer in males. Int J Cancer 103(1):101–104. doi:https://doi.org/10.1002/ijc.10805

    Article  CAS  PubMed  Google Scholar 

  38. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26(2):199–212. doi:https://doi.org/10.1038/s41418-018-0246-9

    Article  PubMed  Google Scholar 

  39. Kim MP, Lozano G (2018) Mutant p53 partners in crime. Cell Death Differ 25(1):161–168. doi:https://doi.org/10.1038/cdd.2017.185

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Hao Q, Lu H (2019) Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol 11(4):293–305. doi:https://doi.org/10.1093/jmcb/mjy072

    Article  CAS  PubMed  Google Scholar 

  41. Ahuja HG, Testa MP, Cline MJ (1990) Variation in the protein coding region of the human p53 gene. Oncogene 5(9):1409–1410

    CAS  PubMed  Google Scholar 

  42. Felix CA, Brown DL, Mitsudomi T, Ikagaki N, Wong A, Wasserman R, Womer RB, Biegel JA (1994) Polymorphism at codon 36 of the p53 gene. Oncogene 9(1):327–328

    CAS  PubMed  Google Scholar 

  43. Rodríguez C, Sobrino T, Agulla J, Bobo-Jiménez V, Ramos-Araque ME, Duarte JJ, Gómez-Sánchez JC, Bolaños JP, Castillo J, Almeida Á (2017) Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death Differ 24(1):144–154. doi:https://doi.org/10.1038/cdd.2016.109

    Article  CAS  PubMed  Google Scholar 

  44. Silwal-Pandit L, Langerød A, Børresen-Dale AL (2017) TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harb Perspect Med 7(1). doi:https://doi.org/10.1101/cshperspect.a026252

  45. Škereňová M, Halašová E, Matáková T, Jesenská Ľ, Jurečeková J, Šarlinová M, Čierny D, Dobrota D (2017) Low Variability and Stable Frequency of Common Haplotypes of the TP53 Gene Region in Colorectal Cancer Patients in a Slovak Population. Anticancer Res 37(4):1901–1907. doi:https://doi.org/10.21873/anticanres.11528

    Article  CAS  PubMed  Google Scholar 

  46. Mostaid MS, Ahmed MU, Islam MS, Bin Sayeed MS, Hasnat A (2014) Lung cancer risk in relation to TP53 codon 47 and codon 72 polymorphism in Bangladeshi population. Tumour Biol 35(10):10309–10317. doi:https://doi.org/10.1007/s13277-014-2285-2

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Lan X, Tan S, Wang S, Li Y (2013) P53 codon 72 Arg/Pro polymorphism and lung cancer risk in Asians: an updated meta-analysis. Tumour Biol 34(5):2511–2520. doi:https://doi.org/10.1007/s13277-013-0678-2

    Article  CAS  PubMed  Google Scholar 

  48. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19(2):1092–1100. doi:https://doi.org/10.1128/mcb.19.2.1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hosen MB, Salam MA, Islam MF, Hossain A, Hawlader MZ, Kabir Y (2015) Association of TP53 gene polymorphisms with susceptibility of bladder cancer in Bangladeshi population. Tumour Biol 36(8):6369–6374. doi:https://doi.org/10.1007/s13277-015-3324-3

    Article  CAS  PubMed  Google Scholar 

  50. Chowdhury MK, Moniruzzaman M, Emran AA, Mostafa MG, Kuddus RH, Uddin MA (2015) TP53 Codon 72 Polymorphisms and Lung Cancer Risk in the Bangladeshi Population. Asian Pac J Cancer Prev 16(8):3493–3498. doi:https://doi.org/10.7314/apjcp.2015.16.8.3493

    Article  PubMed  Google Scholar 

  51. Hossain A, Murshid GMM, Zilani MNH, Islam F, Sultana R, Sultana T, Hossain MG, Rahman MM (2017) TP53 codon 72 polymorphism and breast cancer risk in Bangladeshi population. Breast Cancer 24(4):571–578. doi:https://doi.org/10.1007/s12282-016-0740-1

    Article  PubMed  Google Scholar 

  52. Apu MNH, Rashed AZM, Bashar T, Rahman MM, Mostaid MS (2020) TP53 genetic polymorphisms and susceptibility to cervical cancer in Bangladeshi women: a case-control study. Mol Biol Rep 47(6):4357–4364. doi:https://doi.org/10.1007/s11033-020-05523-2

    Article  CAS  PubMed  Google Scholar 

  53. Shabnaz S, Ahmed MU, Islam MS, Islam MR, Al-Mamun MM, Islam MS, Hasnat A (2016) Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumour Biol 37(6):7229–7237. doi:https://doi.org/10.1007/s13277-015-4612-7

    Article  CAS  PubMed  Google Scholar 

  54. Nairuz T, Rahman M, Bushra MU, Kabir Y (2020) TP53 Arg72Pro and XPD Lys751Gln Gene Polymorphisms and Risk of Lung Cancer in Bangladeshi Patients. Asian Pac J Cancer Prev 21(7):2091–2098. doi:https://doi.org/10.31557/apjcp.2020.21.7.2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoshida T, Zhang G, Haura EB (2010) Targeting epidermal growth factor receptor: central signaling kinase in lung cancer. Biochem Pharmacol 80(5):613–623. doi:https://doi.org/10.1016/j.bcp.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, Shimada Y, Matsumura Y, Ohtsu A, Yoshino T, Doi T, Takahashi A, Odaka Y, Okuyama M, Sawada J, Sakamoto H, Yoshida T (2015) Construction of possible integrated predictive index based on EGFR and ANXA3 polymorphisms for chemotherapy response in fluoropyrimidine-treated Japanese gastric cancer patients using a bioinformatic method. BMC Cancer 15:718. doi:https://doi.org/10.1186/s12885-015-1721-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu X, Wang P, Zhang C, Ma Z (2017) Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget 8(30):50209–50220. doi:https://doi.org/10.18632/oncotarget.16854

    Article  PubMed  PubMed Central  Google Scholar 

  58. Torres-Jasso JH, Marín ME, Santiago-Luna E, Leoner JC, Torres J, Magaña-Torres MT, Perea FJ, Ibarra B, Sánchez-López JY (2015) EGFR gene polymorphisms – 216G > T and – 191 C > A are risk markers for gastric cancer in Mexican population. Genet Mol Res 14(1):1802–1807. doi:https://doi.org/10.4238/2015.March.13.8

    Article  CAS  PubMed  Google Scholar 

  59. Rahman S, Kondo N, Yoneda K, Takuwa T, Hashimoto M, Orui H, Okumura Y, Tanaka F, Kumamoto K, Mostafa MG, Chowdhury GM, Haque A, Hasegawa S (2014) Frequency of epidermal growth factor receptor mutations in Bangladeshi patients with adenocarcinoma of the lung. Int J Clin Oncol 19(1):45–49. doi:https://doi.org/10.1007/s10147-012-0515-4

    Article  CAS  PubMed  Google Scholar 

  60. Sahoo R, Harini VV, Babu VC, Patil Okaly GV, Rao S, Nargund A, Venkataswamy E, RaoR, Kumar BS (2011) Screening for EGFR mutations in lung cancer, a report from India. Lung Cancer 73(3):316–319. doi:https://doi.org/10.1016/j.lungcan.2011.01.004

    Article  PubMed  Google Scholar 

  61. Gajria D, Chandarlapaty S (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 11(2):263–275. doi:https://doi.org/10.1586/era.10.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dahabreh IJ, Murray S (2011) Lack of replication for the association between HER2 I655V polymorphism and breast cancer risk: a systematic review and meta-analysis. Cancer Epidemiol 35(6):503–509. doi:https://doi.org/10.1016/j.canep.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  63. Parvin S, Islam MS, Al-Mamun MM, Islam MS, Ahmed MU, Kabir ER, Hasnat A (2017) Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer 24(2):229–237. doi:https://doi.org/10.1007/s12282-016-0692-5

    Article  PubMed  Google Scholar 

  64. Reza HA, Anamika WJ, Chowdhury MMK, Mostafa MG, Uddin MA (2020) A cohort study on the association of MDM2 SNP309 with lung cancer risk in Bangladeshi population. Korean J Intern Med 35(3):672–681. doi:https://doi.org/10.3904/kjim.2018.125

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hosen MB, Khaleque N, Chakraborty S, Al Mahtab M, Kabir Y (2021) MDM2 (T309G) Gene Polymorphism Determines the Susceptibility of Hepatocellular Carcinoma in Bangladesh. Asian Pac J Cancer Biology 6(3):213–217

    Article  CAS  Google Scholar 

  66. Han JY, Lee GK, Jang DH, Lee SY, Lee JS (2008) Association of p53 codon 72 polymorphism and MDM2 SNP309 with clinical outcome of advanced nonsmall cell lung cancer. Cancer 113(4):799–807. doi:https://doi.org/10.1002/cncr.23668

    Article  CAS  PubMed  Google Scholar 

  67. Jiang L, Wang C, Sun C, Xu Y, Ding Z, Zhang X, Huang J, Yu H (2014) The impact of pri-miR-218 rs11134527 on the risk and prognosis of patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7(9):6206–6212

    PubMed  PubMed Central  Google Scholar 

  68. Guan H, Wei G, Wu J, Fang D, Liao Z, Xiao H, Li M, Li Y (2013) Down-regulation of miR-218-2 and its host gene SLIT3 cooperate to promote invasion and progression of thyroid cancer. J Clin Endocrinol Metab 98(8):E1334–1344. doi:https://doi.org/10.1210/jc.2013-1053

    Article  CAS  PubMed  Google Scholar 

  69. Nazneen F, Millat MS, Barek MA, Aziz MA, Uddin MS, Jafrin S, Aka TD, Islam MS (2021) Genetic Polymorphism of miR-218-2 (rs11134527) in Cervical Cancer: A Case-Control Study on the Bangladeshi Women. MicroRNA (Shariqah United Arab Emirates) 10(3):219–224. doi:https://doi.org/10.2174/2211536610666210715102554

    Article  Google Scholar 

  70. Shi TY, Chen XJ, Zhu ML, Wang MY, He J, Yu KD, Shao ZM, Sun MH, Zhou XY, Cheng X, Wu X, Wei Q (2013) A pri-miR-218 variant and risk of cervical carcinoma in Chinese women. BMC Cancer 13:19. doi:https://doi.org/10.1186/1471-2407-13-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ (2014) TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106(2):djt369. doi:https://doi.org/10.1093/jnci/djt369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Apu MNH, Aktar MN, Rahman MM, Mostaid MS (2021) Association of TGFB1 gene polymorphisms with cervical cancer in Bangladeshi women: A case-control study. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 43(1):27–35. doi:https://doi.org/10.3233/tub-200061

    Article  Google Scholar 

  73. Qi X, Zhang F, Yang X, Fan L, Zhang Y, Chen L, Zhou Y, Chen X, Zhong L, Jiang J (2010) Transforming growth factor-beta1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case-control studies. Breast Cancer Res Treat 122(1):273–279. doi:https://doi.org/10.1007/s10549-010-0847-6

    Article  CAS  PubMed  Google Scholar 

  74. Barnes DR, Antoniou AC (2012) Unravelling modifiers of breast and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: update on genetic modifiers. J Intern Med 271(4):331–343. doi:https://doi.org/10.1111/j.1365-2796.2011.02502.x

    Article  CAS  PubMed  Google Scholar 

  75. El Khachibi M, Diakite B, Hamzi K, Badou A, Senhaji MA, Bakhchane A, Jouhadi H, Barakat A, Benider A, Nadifi S (2015) Screening of exon 11 of BRCA1 gene using the high resolution melting approach for diagnosis in Moroccan breast cancer patients. BMC Cancer 15:81. doi:https://doi.org/10.1186/s12885-015-1040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishat L, Yesmin ZA, Arjuman F, Rahman SHZ, Banu LA (2019) Identification of Mutation in Exon11 of BRCA1 Gene in Bangladeshi Patients with Breast Cancer. Asian Pac J Cancer Prev 20(11):3515–3519. doi:https://doi.org/10.31557/apjcp.2019.20.11.3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 102, Chakraborty A, Banerjee D, Basak J, Mukhopadhyay A (2015) Absence of 185delAG and 6174delT Mutations among Breast Cancer Patients of Eastern India. Asian Pac J Cancer Prev 16(17):7929–7933. doi:https://doi.org/10.7314/apjcp.2015.16.17.7929

    Article  Google Scholar 

  78. Singh A, Pandey A, Tewari M, Pandey P, Pandey H, Shukla H (2015) BRCA1 gene’s EXON 11 and breast carcinoma: a mutational hot spot for familial patients and prone to metastases in Northern India. J Clin Exp Pathol 5(219):2161–06811000219

    Google Scholar 

  79. Bhatta B, Thapa R, Shahi S, Bhatta Y, Pandeya DR, Poudel BH (2016) A Pilot Study on Screening of BRCA1 Mutations (185delAG, 1294del40) in Nepalese Breast Cancer Patients. Asian Pac J Cancer Prev 17(4):1829–1832. doi:https://doi.org/10.7314/apjcp.2016.17.4.1829

    Article  PubMed  Google Scholar 

  80. Karami F, Mehdipour P (2013) A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res Int 2013:928562. doi:https://doi.org/10.1155/2013/928562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nowacka-Zawisza M, Wiśnik E, Wasilewski A, Skowrońska M, Forma E, Bryś M, Różański W, Krajewska WM (2015) Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer. Anal Cell Pathol (Amst) 2015:828646. doi:https://doi.org/10.1155/2015/828646

  82. Romanowicz-Makowska H, Smolarz B, Samulak D, Michalska M, Lewy J, Burzyński M, Kokołaszwili G (2012) A single nucleotide polymorphism in the 5’ untranslated region of RAD51 and ovarian cancer risk in Polish women. Eur J Gynaecol Oncol 33(4):406–410

    CAS  PubMed  Google Scholar 

  83. Hridy AU, Shabnaz S, Asaduzzaman MD, Shahriar M, Bhuiyan MA, Islam MS, Hossen SMM, Emran TB (2020) Genetic Variations of RAD51 and XRCC2 Genes Increase the Risk of Colorectal Cancer in Bangladeshi Population. Asian Pac J Cancer Prev 21(5):1445–1451. doi:https://doi.org/10.31557/apjcp.2020.21.5.1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nissar S, Baba SM, Akhtar T, Rasool R, Shah ZA, Sameer AS (2014) RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir. Eur J Cancer Prev 23(4):264–268. doi:https://doi.org/10.1097/cej.0000000000000049

    Article  CAS  PubMed  Google Scholar 

  85. Yazdanpanahi N, Salehi R, Kamali S (2018) RAD51 135G > C polymorphism and risk of sporadic colorectal cancer in Iranian population. J Cancer Res Ther 14(3):614–618. doi:https://doi.org/10.4103/0973-1482.183558

    Article  CAS  PubMed  Google Scholar 

  86. Ivy SC, Shabnaz S (2021) Association of RAD51 and XRCC2 Gene Polymorphisms with Cervical Cancer Risk in the Bangladeshi Women. Asian Pac J Cancer Prev 22(7):2099–2107. doi:https://doi.org/10.31557/apjcp.2021.22.7.2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang L, Ruan Z, Hong Q, Gong X, Hu Z, Huang Y, Xu A (2012) Single nucleotide polymorphisms in DNA repair genes and risk of cervical cancer: A case-control study. Oncol Lett 3(2):351–362. doi:https://doi.org/10.3892/ol.2011.463

    Article  CAS  PubMed  Google Scholar 

  88. Duan F, Song C, Dai L, Cui S, Zhang X, Zhao X (2014) The significance of Exo1 K589E polymorphism on cancer susceptibility: evidence based on a meta-analysis. PLoS ONE 9(5):e96764. doi:https://doi.org/10.1371/journal.pone.0096764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Imtiaz H, Afroz S, Hossain MA, Bellah SF, Rahman MM, Kadir MS, Sultana R, Mazid MA, Rahman MM (2019) Genetic polymorphisms in CDH1 and Exo1 genes elevate the prostate cancer risk in Bangladeshi population. Tumour Biol 41(3):1010428319830837. doi:https://doi.org/10.1177/1010428319830837

    Article  CAS  PubMed  Google Scholar 

  90. Lin WY, Camp NJ, Cannon-Albright LA, Allen-Brady K, Balasubramanian S, Reed MW, Hopper JL, Apicella C, Giles GG, Southey MC, Milne RL, Arias-Pérez JI, Menéndez-Rodríguez P, Benítez J, Grundmann M, Dubrowinskaja N, Park-Simon TW, Dörk T, Garcia-Closas M, Figueroa J, Sherman M, Lissowska J, Easton DF, Dunning AM, Rajaraman P, Sigurdson AJ, Doody MM, Linet MS, Pharoah PD, Schmidt MK, Cox A (2011) A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet 48(7):477–484. doi:https://doi.org/10.1136/jmedgenet-2011-100018

    Article  CAS  PubMed  Google Scholar 

  91. Romanowicz H, Brys M, Forma E, Smolarz B (2016) Lack of Association between the 4234G/C X-Ray Repair Cross-Complementing 2 (XRCC2) Gene Polymorphism and the Risk of Endometrial Cancer among Polish Population.

  92. Pérez LO, Crivaro A, Barbisan G, Poleri L, Golijow CD (2013) XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk. Pathol Oncol research: POR 19(3):553–558. doi:https://doi.org/10.1007/s12253-013-9616-2

    Article  CAS  PubMed  Google Scholar 

  93. Datkhile KD, Patil MN, Durgawale PP, Joshi SA, Korabu KS, Kakade SV (2018) Assessment of role of genetic polymorphisms in XRCC1, XRCC2 and XRCC3 genes in cervical cancer susceptibility from a rural population: a hospital based case-control study from Maharashtra, India. Int J Res Med Sci 6:3132–3139

    Article  Google Scholar 

  94. Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NG, Beverloo HB, Hoeijmakers JH, Kanaar R (2004) The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 24(13):5776–5787. doi:https://doi.org/10.1128/mcb.24.13.5776-5787.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dai Y, Song Z, Zhang J, Gao W (2019) Comprehensive assessment of the association between XPC rs2228000 and cancer susceptibility based on 26835 cancer cases and 37069 controls. Biosci Rep 39(12). doi:https://doi.org/10.1042/bsr20192452

  96. Das S, Naher L, Aka TD, Aziz MA, Shabnaz S, Shahriar M, Islam MS (2021) The ECCR1 rs11615, ERCC4 rs2276466, XPC rs2228000 and XPC rs2228001 polymorphisms increase the cervical cancer risk and aggressiveness in the Bangladeshi population. Heliyon 7(1):e05919. doi:https://doi.org/10.1016/j.heliyon.2021.e05919

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gangwar R, Mittal B, Srivastava S, Singh H, Mittal RD (2010) Genetic variants of DNA repair gene XPC modulating susceptibility to cervical cancer in North India. Oncol Res 18(7):329–335. doi:https://doi.org/10.3727/096504010x12626118080028

    Article  PubMed  Google Scholar 

  98. Gil J, Ramsey D, Stembalska A, Karpinski P, Pesz KA, Laczmanska I, Leszczynski P, Grzebieniak Z, Sasiadek MM (2012) The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual’s susceptibility to sporadic colorectal cancer. Mol Biol Rep 39(1):527–534. doi:https://doi.org/10.1007/s11033-011-0767-5

    Article  CAS  PubMed  Google Scholar 

  99. Alanazi M, Pathan AA, Ajaj SA, Khan W, Shaik JP, Al Tassan N, Parine NR (2013) DNA Repair Genes XRCC1, XRCC3, XPD, and OGG1 Polymorphisms among the Central Region Population of Saudi Arabia. Biol Res 46(2):161–167. doi:https://doi.org/10.4067/s0716-97602013000200007

    Article  PubMed  Google Scholar 

  100. Sahaba SA, Rashid MA (2021) The link of ERCC2 rs13181 and ERCC4 rs2276466 polymorphisms with breast cancer in the Bangladeshi population. https://doi.org/10.1007/s11033-021-06994-7

  101. Yang Z, Fang X, Pei X, Li H (2013) Polymorphisms in the ERCC1 and XPF genes and risk of breast cancer in a Chinese population. Genetic Test Mol biomarkers 17(9):700–706. doi:https://doi.org/10.1089/gtmb.2013.0122

    Article  CAS  Google Scholar 

  102. Li H, Zhou L (2020) Distribution and susceptibility of ERCC1/XPF gene polymorphisms in Han and Uygur women with breast cancer in Xinjiang, China. 9:9571–9580. https://doi.org/10.1002/cam4.3547. 24

  103. Corso G, Marrelli D, Pascale V, Vindigni C, Roviello F (2012) Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature. BMC Cancer 12:8. doi:https://doi.org/10.1186/1471-2407-12-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seevaratnam R, Coburn N, Cardoso R, Dixon M, Bocicariu A, Helyer L (2012) A systematic review of the indications for genetic testing and prophylactic gastrectomy among patients with hereditary diffuse gastric cancer. Gastric Cancer 15(Suppl 1):S153–163. doi:https://doi.org/10.1007/s10120-011-0116-3

    Article  PubMed  Google Scholar 

  105. Akbas H, Uyanikoglu A, Aydogan T, Atay AE, Dilmec F, Cerrah S, Akkafa F, Nar H (2013) E-cadherin (CDH1) gene-160 C > A promoter polymorphism and Risk of Gastric and Esophageal Cancers. Acta Med Mediterranea 29:671–676

    Google Scholar 

  106. Chen D, Juko-Pecirep I, Hammer J, Ivansson E, Enroth S, Gustavsson I, Feuk L, Magnusson PK, McKay JD, Wilander E, Gyllensten U (2013) Genome-wide association study of susceptibility loci for cervical cancer. J Natl Cancer Inst 105(9):624–633. doi:https://doi.org/10.1093/jnci/djt051

    Article  CAS  PubMed  Google Scholar 

  107. Hasan ME, Matin M (2021) Polymorphic variants INSIG2 rs6726538, HLA-DRB1 rs9272143, and GCNT1P5 rs7780883 contribute to the susceptibility of cervical cancer in the Bangladeshi women. 10:1829–1838. https://doi.org/10.1002/cam4.3782. 5

  108. Aschauer L, Muller PA (2016) Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem Soc Trans 44(2):460–466. doi:https://doi.org/10.1042/bst20150261

    Article  CAS  PubMed  Google Scholar 

  109. Wang X (2018) Clinical trans-omics: an integration of clinical phenomes with molecular multiomics. Cell Biol Toxicol 34(3):163–166. doi:https://doi.org/10.1007/s10565-018-9431-3

    Article  CAS  PubMed  Google Scholar 

  110. Petrelli F, Borgonovo K, Cabiddu M, Barni S (2012) Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small-cell lung cancer: a meta-analysis of 13 randomized trials. Clin Lung Cancer 13(2):107–114. doi:https://doi.org/10.1016/j.cllc.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  111. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:https://doi.org/10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  112. Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G (2018) Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 9(29):20508–20523. doi:https://doi.org/10.18632/oncotarget.24974

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tung MC, Lin PL, Wang YC, He TY, Lee MC, Yeh SD, Chen CY, Lee H (2015) Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget 6(39):41692–41705. doi:https://doi.org/10.18632/oncotarget.6150

    Article  PubMed  PubMed Central  Google Scholar 

  114. Turner NC, Tutt AN (2012) Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence? Breast Cancer Res 14(6):115. doi:https://doi.org/10.1186/bcr3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Godet I, Gilkes DM (2017) BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther 4(1). doi:https://doi.org/10.15761/icst.1000228

  116. Nairuz T, Bushra YU, Kabir Y (2021) Effect of XPD and TP53 Gene Polymorphisms on the Risk of Platinum-Based Chemotherapy Induced Toxicity in Bangladeshi Lung Cancer Patients. Asian Pac J Cancer Prev 22(12):3809-3815. doi: https://doi.org/10.31557/apjcp.2021.22.12.3809

Download references

Funding

No funding support for this review.

Author information

Authors and Affiliations

Authors

Contributions

Golap Babu and Md. Asaduzzaman Khan conceptualized this study; Golap Babu drafted the manuscript, and Shad Bin Islam acquired information and helped in drafting manuscript; The work was supervised and manuscript was edited and finalized by Md. Asaduzzaman Khan.

Corresponding author

Correspondence to Md. Asaduzzaman Khan.

Ethics declarations

Conflict of interest

None.

Ethical approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent:

Not required/ not applicable for this review article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, G., Bin Islam, S. & Khan, M.A. A review on the genetic polymorphisms and susceptibility of cancer patients in Bangladesh. Mol Biol Rep 49, 6725–6739 (2022). https://doi.org/10.1007/s11033-022-07282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07282-8

Keywords

Navigation