Skip to main content
Log in

Gene rearrangement in the mitogenome of whiteflies (Hemiptera: Aleyrodinae) along with their phylogeny and characterization of complete mitogenome of Aleurodicus rugioperculatus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Mitochondrial genome rearrangements have been used for defining evolutionary relationships, but there have been incidences of convergences at different taxonomic levels. To gain new insights into whitefly mitogenome evolution, gene arrangement and phylogeny, we sequenced the complete mitogenome of Aleurodicus rugioperculatus (Aleyrodidae: Aleurodicinae) and conducted a comparative analysis with the previously published mitogenomes across the family Aleyrodidae.

Methods and Results

The complete mitogenome of Aleurodicus rugioperculatus was generated by Next generation sequencing method. It is 15,060 bp circular molecule with 86.5 A + T and 5.5% G + C content. It contains 37 genes (13 PCGs, two rRNAs, 22 tRNAs) and a non-coding control region (CR). Comparative analysis of codon usage indicated that the subfamily Aleyrodinae have weaker bias than Aleurodicinae. Bayesian Inference (BI) and Maximum Likelihood (ML) phylogenetic analyses yielded similar topologies supporting the monophyly of Aleyrodinae and Aleurodicinae. The gene order of 13 whiteflies was compared with ancestor to examine the plesiomorphies, synapomorphies and autapomorphies. We identified five gene blocks (I-V) in the whitefly ancestor that are shared plesiomorphies retained in different whitefly lineages. Gene block I is conserved in all whiteflies except three species. Conversely, we detected 83 derived gene boundaries within the family. Mapping these gene boundaries onto a phylogenetic tree revealed that 16 were symplesiomorphies for two subfamilies; 9 were synapomorphies between the species, and 28 autapomorphies for individual species.

Conclusions

Comparative analyses of gene order of whiteflies revealed the derived gene boundaries which can be further investigated with more mitogenome data to examine the genome evolution in whiteflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Annotated mitogenome assemblies of Aleurodicus rugioperculatus are deposited in NCBI GenBank under the following accession number MW649000.

References

  1. Hao YJ, Zou YL, Ding YR, Xu WY, Yan ZT, Li XD, Fu WB, Li TJ, Chen B (2017) Complete mitochondrial genomes of Anopheles stephensi and An. dirus and comparative evolutionary mitochondriomics of 50 mosquitoes. Scientific Reports. 7(1): 1–13

  2. Yang L, Dai J, Gao Q, Yuan G, Liu J, Sun Y, Sun Y, Wang L, Qian C, Zhu B, Liu C, Wei G (2020) Characterization of the complete mitochondrial genome of Orthaga olivacea Warre (Lepidoptera Pyralidae) and comparison with other Lepidopteran insects. PLoS One 15(3):1–20

    Article  Google Scholar 

  3. Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V (2020) Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci Rep 10(1):1–16

    Article  Google Scholar 

  4. Moreno-Carmona M, Cameron SL, Prada Quiroga CF (2021) How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. Gene 791:145719

    Article  CAS  PubMed  Google Scholar 

  5. Tyagi K, Kumar V, Poddar N, Prasad P, Tyagi I, Kundu S, Chandra K (2020) The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae). Int J Biol Macromol 146:488–496

    Article  CAS  PubMed  Google Scholar 

  6. Song N, Liang A-P, Bu C-P (2012) A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences. PLoS ONE 7(11):e48778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cameron SL (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Rev Entomol 59:95–117

    Article  CAS  Google Scholar 

  8. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25(2):99–120

    Article  Google Scholar 

  9. Ming-Xing L, Zhi-Teng C, Wei-Wei Y, Yu-Zhou D (2017) The complete mitochondrial genome of a spiraling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae), Mitochondrial DNA Part A. 28(2): 165–166

  10. Thao LL, Baumann L, Baumann P (2004) Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol 4(1):1–13

    Article  Google Scholar 

  11. Wang HL, Lei T, Liu YQ (2019) Complete mitochondrial DNA genome of whitefly species (Hemiptera: Aleyrodidae) from Litchi chinensis. Mitochondrial DNA Part B 4(2):2765–2766

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen SC, Wang X-Q, Li P-W, Hu X, Wang J-J, Peng P (2016) The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae. Int J Mol Sci 17(11):1843

    Article  PubMed Central  Google Scholar 

  13. Chen ZT, Mu LX, Wang JR, Du YZ (2016) Complete mitochondrial genome of the citrus spiny whitefly Aleurocanthus spiniferus (Quaintance) (Hemiptera: Aleyrodidae): Implications for the phylogeny of whiteflies. PLoS One 11:e0161385

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang HL, Xiao N, Yang J, Wang XW, Colvin J, Liu SS (2016) The complete mitochondrial genome of Bemisia afer (Hemiptera: Aleyrodidae). Mitochondrial DNA Part A 27(1):98–99

    Article  Google Scholar 

  15. Tay WT, Elfekih S, Court L, Gordon KH, De Barro PJ (2016) Complete mitochondrial DNA genome of Bemisia tabaci cryptic pest species complex Asia I (Hemiptera: Aleyrodidae). Mitochondrial DNA Part A 27(2):972–973

    Article  CAS  Google Scholar 

  16. Li S, Wang WR, Zhou YF, Zhong LK, Jiang Y, Meng ZH (2020) The complete mitochondrial genome sequence of Crenidorsum turpiniae (Hemiptera: Aleyrodidae). Mitochondrial DNA Part B 5(4):3859–3860

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang ZT, Yan X, Yang WJ, Jin DC (2020) Characterization of the complete mitochondrial genome of Pealius machili (Hemiptera: Aleyrodidae) with phylogenetic analysis. Mitochondrial DNA Part B 5(2):1463–1464

    Article  Google Scholar 

  18. Khamis FM, Ombura FLO, Ajene IJ, Akutse KS, Subramanian S, Mohamed SA, Dubois T, Tanga CM, Ekesi S (2021) Mitogenomic analysis of diversity of key whitefly pests in Kenya and its implication to their sustainable management. Sci Rep 11(1):1–11

    Article  Google Scholar 

  19. David BV, Subramaniam TR (1976) Studies on some Indian Aleyrodidae. Records of Zoological Survey of India. 70: 133–233

  20. Mound LA, Halsey SH (1978) Whitefly of the world: a systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History), London and John Wiley and Sons, Chichester, UK

    Book  Google Scholar 

  21. Martin JH, Mound LA (2007) An annotated checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492(1):1–84

    Article  Google Scholar 

  22. Martin JH (2004) The whiteflies of Belize (Hemiptera: Aleyrodidae) Part 1-introduction and account of the subfamily Aleurodicinae Quaintance & Baker. Zootaxa 681:1–119

    Article  Google Scholar 

  23. Selvaraj K, Venkatesan T, Sumalatha BV, Kiran CM (2019) Invasive rugose spiraling whitefly Aleurodicus rugioperculatus Martin a serious pest of oil palm Elaeis guineensis in India. J Oil Palm Res 31(4):651–656

    Google Scholar 

  24. Pathak S (2019) First Record of Rugose Spiraling Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) an Invasive Pest in Assam. Pantnagar J Res 7(2):120–122

    Google Scholar 

  25. Mondal P, Ganguly M, Bandyopadhyay P, Karmakar K, Kar A, Ghosh DK (2020) Status of Rugose Spiraling Whitefly Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) in West Bengal with notes on host plants, natural enemies and management. J Pharmacognosy Phytochemistry 9(1):2023–2027

    Google Scholar 

  26. Jin JJ, Yu W, bin, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ (2018) GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21(1):1–31

    Google Scholar 

  27. Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18

    PubMed  Google Scholar 

  28. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenetics Evol 69(2):313–319

    Article  Google Scholar 

  29. Laslett D, Canbäck B (2008) ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2):172–175

    Article  CAS  PubMed  Google Scholar 

  30. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biology Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  32. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–359

    Article  CAS  PubMed  Google Scholar 

  33. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    Article  CAS  PubMed  Google Scholar 

  34. Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M (2007) CREx: Inferring genomic rearrangements based on common intervals. Bioinformatics 23(21):2957–2958

    Article  CAS  PubMed  Google Scholar 

  35. Bernt M, Merkle D, Middendorf M (2008) An algorithm for inferring mitogenome rearrangements in a phylogenetic tree. RECOMB International Workshop on Comparative Genomics. 143–157

  36. Zhang B, Zheng J, Liang L, Fuller S, Ma CS (2016) The complete mitochondrial genome of Sitobion avenae (Hemiptera: Aphididae). Mitochondrial DNA Part A 27(2):945–946

    Article  CAS  Google Scholar 

  37. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38(suppl2):W7–W13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2):171–180

    Article  PubMed  Google Scholar 

  39. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biology Evol 34(3):772–773

    CAS  Google Scholar 

  40. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biology 61(3):539–542

    Article  Google Scholar 

  42. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rambaut A (2020) FigTree. Version 1.4.4 Institute of Evolutionary Biology. University of Edinburgh, Edinburgh

    Google Scholar 

  44. Woese CR, Gutell R, Gupta R, Noller HF (1984) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Reviews 47(4):621–669

    Article  Google Scholar 

  45. Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR (2006) Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): Structure, organization, and retrotransposable elements. Insect Mol Biology 15(5):657–686

    Article  CAS  Google Scholar 

  46. Fenn JD, Cameron SL, Whiting MF (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Mol Biol 16(2):239–252

    Article  CAS  PubMed  Google Scholar 

  47. Guan DL, Qian ZQ, Ma LB, Bai Y, Xu SQ (2019) Different mitogenomic codon usage patterns between damselflies and dragonflies and nine complete mitogenomes for odonates. Sci Rep 9(1):1–9

    Article  Google Scholar 

  48. Wagner A (2008) Neutralism and selectionism: a network-based reconciliation. Nat Reviews Genet 9(12):965–974

    Article  CAS  Google Scholar 

  49. Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA (2012) A mitochondrial genome phylogeny of termites (Insecta: Termitoidae): Robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenetics Evol 65:163–173

    Article  Google Scholar 

  50. Bourguignon T, Lo N, Šobotník J, Ho SY, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dusses D, Křížková B, Roisin Y (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34(3):589–597

    CAS  PubMed  Google Scholar 

  51. Ding S, Li X, Wang N, Cameron SL, Mao M, Wang Y, Xi Y, Yang D (2015) The phylogeny and evolutionary timescale of Muscoidea (Diptera: Brachycera: Calyptratae) inferred from mitochondrial genomes. PloS one 10(7):e0134170

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mao M, Gibson T, Dowton M (2015) Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mol Phylogenetics Evol 84:34–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KT, VK and AP are thankful to the Director, Zoological Survey of India (ZSI), Ministry of Environment, Forests and Climate Change (MoEFCC), Govt. of India for providing necessary permissions and facilities. This work was financially supported by Zoological Survey of India (ZSI) in-house project, ‘National Faunal Genome Resources (NFGR)’. We are thankful to Prof. Stephan L. Cameron, College of Agriculture, Entomology, Purdue University, West Lafayette, United States for his quick help in language editing of the manuscript.

Funding

acquisition: Vikas Kumar;

Investigation: Kaomud Tyagi, Vikas Kumar;

Methodology: Kaomud Tyagi, Vikas Kumar,

Project administration: Vikas Kumar;

Resources: Vikas Kumar;

Software: Kaomud Tyagi, Vikas Kumar,

Supervision: Vikas Kumar, Kaomud Tyagi, Dhriti Banerjee;

Validation: Vikas Kumar, Kaomud Tyagi;

Visualization: Vikas Kumar, Kaomud Tyagi;

Writing: Avas Pakrashi, Kaomud Tyagi, Vikas Kumar, C. M. Kalleshwaraswamy, Dhriti Banerjee.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kaomud Tyagi, Vikas Kumar;

Specimen Collection: C. M. Kalleshwaraswamy.

Data curation: Avas Pakrashi, Kaomud Tyagi,

Formal analysis: Avas Pakrashi, Kaomud Tyagi;

Corresponding author

Correspondence to Kaomud Tyagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

There is no specific permission required to collect the whitefly specimens. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Pakrashi, A., Kalleshwaraswamy, C.M. et al. Gene rearrangement in the mitogenome of whiteflies (Hemiptera: Aleyrodinae) along with their phylogeny and characterization of complete mitogenome of Aleurodicus rugioperculatus. Mol Biol Rep 49, 4399–4409 (2022). https://doi.org/10.1007/s11033-022-07275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07275-7

Keywords

Navigation