Skip to main content
Log in

The toxicity of perfluorodecanoic acid is mainly manifested as a deflected immune function

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Perfluorodecanoic acid (PFDA) is a type of perfluoroalkyl acid (PFAA). PFDA has toxicity similar to dioxin; its effect on the body is not through a single target or a single pathway. However, the mechanism at the global level is still unclear.

Methods and Results

We treated mice with PFDA and characterized the global changes in gene expression in the liver using microarray analyses. The enriched KEGG pathways and GO analyses revealed that PFDA greatly affected the immune response, which was different from the response of gastric cells previously studied. As a proof of principle, the expressions of IL-1β and IL-18 were both decreased after PFDA treatment, and qRT-PCR and ELISAs verified the reduction of IL-1β and IL-18 in liver tissues. Mechanistic investigations indicated that PFDA inhibited caspase-1 activation, and decreased the mRNA levels of NLRP1, NLRP3, and NLRC4; thus, suggesting that inflammasome assemblies were suppressed. Further microarray data revealed that cIAP2 and its binding proteins, which are critical for regulating inflammasome assembly, were also repressed by PFDA. In addition, flow cytometry results revealed a significant inhibition of Th1 cell differentiation in the livers of PFDA-treated mice.

Conclusions

The results of this study suggested that one of the main toxic effects of PFDA on livers was the inhibition of immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PFDA:

Perfluorodecanoic acid

qRT-PCR:

Quantitative reverse transcriptase-polymerase chain reaction

KEGG:

Kyoto encyclopedia of genes and genomes

NLRP:

NLR family pyrin domain containing 1

NNMT:

Nicotinamide N-methyltransferase

FABP1:

Fatty acid binding protein 1

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PPARα:

Peroxisome proliferator-activated receptor α

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

DAVID:

Database annotations, visualization and comprehensive discovery

NLRC4:

NLR family CARD domain containing 4

PMA:

Propylene glycol methyl ether acetate

cIAP2:

Cellular inhibitor of apoptosis 2

SCD3:

Stearoyl-coenzyme A desaturase 3

OLR1:

Oxidized low density lipoprotein receptor 1

ACSL:

Acyl-CoA synthetase long chain family member 1

ASC:

Apoptosis-related speck-like protein containing a CARD

Birc3:

Baculoviral IAP repeat containing 3

PFAAs:

Perfluoroalkyl acids

CPT:

Carnitine palmitoyltransferase

TRAF:

TNF receptor-associated factor

GO:

Gene Ontology

Th1:

T helper cell type 1

TLR:

Toll-like receptor

ANGPTL4:

Angiopoietin like 4

DMSO:

Dimethyl sulfoxide

TNF:

Tumor necrosis factor

ELISA:

Enzyme-linked immunosorbent assay

SDS:

Sodium dodecyl sulfate

PBS:

Phosphate buffer saline

FBS:

Fetal bovine serum

CYP:

Cytochrome P450

APOA2:

Apolipoprotein A2

BFA:

Brefeldin A

ACOX1:

Acyl-coenzyme A oxidase 1

MMP1:

Matrix metallopeptidase 1

PFAAs:

Perfluoroalkyl acids

CPT:

Carnitine palmitoyltransferase

TRAF:

TNF receptor-associated factor

GO:

Gene Ontology

Th1:

T helper cell type 1

TLR:

Toll-like receptor

ANGPTL4:

Angiopoietin like 4

DMSO:

Dimethyl sulfoxide

TNF:

Tumor necrosis factor

ELISA:

Enzyme-linked immunosorbent assay

SDS:

Sodium dodecyl sulfate

PBS:

Phosphate buffer saline

FBS:

Fetal bovine serum

CYPCYP:

Cytochrome P450

APOA2:

Apolipoprotein A2

BFA:

Brefeldin ABrefeldin A

ACOX1:

Acyl-coenzyme A oxidase 1Acyl-coenzyme A oxidase 1

MMP1:

Matrix metallopeptidase 1

References

  1. Eschauzier C, Hoppe M, Schlummer M, de Voogt P (2013) Presence and sources of anthropogenic perfluoroalkyl acids in high-consumption tap-water based beverages. Chemosphere 90:36–41

    Article  CAS  PubMed  Google Scholar 

  2. Guenthner RA, Vietork LM (1962) Surface active materials from perfluorocarboxylic and perfluorosulfonilic acids. I&ED Prod Res Dev 1:165–169

    Article  CAS  Google Scholar 

  3. Shinoda K, Nomura T (1980) Miscibility of fluorocarbon and hydrocarbon surfactant in micelles and liquid mixtures: basic studies of oil repellent and fire extinguishing agents. J Phys Chem 8:365–369

    Article  Google Scholar 

  4. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342

    Article  CAS  PubMed  Google Scholar 

  5. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  PubMed  Google Scholar 

  6. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007) Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 115:1596–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Ren XM, Wan B, Guo LH (2014) Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 279:275–283

    Article  CAS  PubMed  Google Scholar 

  8. Omoike OE, Pack RP, Mamudu HM, Liu Y, Wang L (2021) A cross-sectional study of the association between perfluorinated chemical exposure and cancers related to deregulation of estrogen receptors. Environ Res 196:110329

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Son J, Park MS, Ji Y, Chae S, Jun C, Bae JS, Kwon TK, Choo S, Yoon H, Yoon D, Ryoo J, Kim SH, Park MJ, Lee HS (2013) In vivo evaluation and comparison of developmental toxicity and teratogenicity of perfluoroalkyl compounds using Xenopus embryos. Chemosphere 93:1153–1160

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Guo X, Lu S, Sang N, Li G, Xie P, Liu C, Zhang L, Xing Y (2018) Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Environ Pollut 235:974–982

    Article  CAS  PubMed  Google Scholar 

  11. A Jensen.A. and H Leffers. (2008) Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl 31:161–169

    Article  Google Scholar 

  12. Wang R, Wang R, Niu X, Cheng Y, Shang X, Li Y, Li S, Liu X, Shao J (2019) Role of astrocytes-derived d-serine in PFOS-induced neurotoxicity through NMDARs in the rat primary hippocampal neurons. Toxicology 422:14–24

    Article  CAS  PubMed  Google Scholar 

  13. Frawley RP, Smith M, Cesta MF, Hayes-Bouknight S, Blystone C, Kissling GE, Harris S, Germolec D (2018) Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague-Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. J Immunotoxicol 15:41–52

    Article  CAS  PubMed  Google Scholar 

  14. Liang L, Pan Y, Bin L, Liu Y, Huang W, Li R, Lai KP (2021) Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. Chemosphere 15:132892

    Google Scholar 

  15. Tian J, Hong Y, Li Z, Yang Z, Lei B, Liu J, Cai Z (2021) Immunometabolism-modulation and immunotoxicity evaluation of perfluorooctanoic acid in macrophage. Ecotoxicol Environ Saf 215:112128

    Article  CAS  PubMed  Google Scholar 

  16. DeWitt JC, Williams WC, Creech NJ, Luebke RW (2016) Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting. J Immunotoxicol 13:38–45

    Article  CAS  PubMed  Google Scholar 

  17. Cui L, Zhou Q, Liao C, Fu J, Jiang G (2009) Studies on thetoxicological effects of PFOA and PFOS on rats using histolog-ical observation and chemical analysis. Arch Environ ContamToxicol 56:338–349

    Article  CAS  Google Scholar 

  18. Foreman JE, Chang SC, Ehresman DJ, Butenhoff JL, Anderson CR, Palkar PS, Kang BH, Gonzalez FJ, Peters JM (2009) Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPAR-alpha. Toxicol Sci 110:204–211

    Article  CAS  PubMed  Google Scholar 

  19. DeWitt JC, Shnyra A, Badr ZM, Loveless SE, Hoban D, Frame SR, Cunard R, Anderson SE, Meade BJ, Peden-Adams MM, Luebke RW, Luster MI (2009) Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol 39:76–94

    Article  CAS  PubMed  Google Scholar 

  20. Kudo N, Kawashima Y (2003) Induction of triglyceride accumulation in the liver of rats by perfluorinated fatty acids with different carbon chain lengths: comparison with induction of peroxisomal beta-oxidation. Biol Pharm Bull 26:47–51

    Article  CAS  PubMed  Google Scholar 

  21. Erkekoglu P, Oral D, Chao MW, Kocer-Gumusel B (2017) Hepatocellular Carcinoma and Possible Chemical and Biological Causes: A Review. J Environ Pathol Toxicol Oncol 36:171–190

    Article  PubMed  Google Scholar 

  22. Olson CT, Andersen ME (1983) The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicol Appl Pharmacol 70:362–372

    Article  CAS  PubMed  Google Scholar 

  23. Yeung LW, So MK, Jiang G, Taniyasu S, Yamashita N, Song M, Wu Y, Li J, Giesy JP, Guruge KS, Lam PK (2006) Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environ Sci Technol 40:715–720

    Article  CAS  PubMed  Google Scholar 

  24. Drew R, Hagen TG, Champness D, Sellier A (2021) Half-lives of several polyfluoroalkyl substances (PFAS) in cattle serum and tissues. Food Addit Contam Part A 14:1–21

    Google Scholar 

  25. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115:1298–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Costa G, Sartori S, Consonni D (2009) Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med 51:364–372

    Article  CAS  PubMed  Google Scholar 

  27. Brede E, Wilhelm M, Goen T, Muller J, Rauchfuss K, Kraft M, Holzer J (2010) Two-year follow-up biomonitoring pilot study of residents’ and controls’ PFC plasma levels after PFOA reduction in public water system in Arnsberg Germany. Int J Hyg Environ Health 213:217–223

    Article  PubMed  Google Scholar 

  28. Seals R, Bartell SM, Steenland K (2011) Accumulation and clearance of perfluorooctanoic acid (PFOA) in current and former residents of an exposed community. Environ Health Perspect 119:119–124

    Article  CAS  PubMed  Google Scholar 

  29. Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135–140

    Article  CAS  PubMed  Google Scholar 

  30. Dzierlenga AL, Robinson VG, Waidyanatha S, DeVito MJ, Eifrid MA, Gibbs ST, Granville CA, Blystone CR (2020) Toxicokinetics of perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) in male and female Hsd: Sprague dawley SD rats following intravenous or gavage administration. Xenobiotica 50:722–732

    Article  CAS  PubMed  Google Scholar 

  31. Gutshall DM, Pilcher GD, Langley AE (1988) Effect of thyroxine supplementation on the response to perfluoro-n-decanoic acid (PFDA) in rats. J Toxicol Environ Health 24:491–498

    Article  CAS  PubMed  Google Scholar 

  32. Langley AE (1990) Effects of perfluoro-n-decanoic acid on the respiratory activity of isolated rat liver mitochondria. J Toxicol Environ Health 29:329–336

    Article  CAS  PubMed  Google Scholar 

  33. Van Rafelghem MJ, Inhorn SL, Peterson RE (1987) Effects of perfluorodecanoic acid on thyroid status in rats. Toxicol Appl Pharmacol 87:430–439

    Article  PubMed  Google Scholar 

  34. Kelling CK, Van Rafelghem MJ, Drake RL, Menahan LA, Peterson RE (1986) Regulation of hepatic malic enzyme by perfluorodecanoic acid. J Biochem Toxicol 1:23–37

    Article  CAS  PubMed  Google Scholar 

  35. Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y (1992) Hepatomegaly is an early biomarker for hepatocarcinogenesis induced by peroxisome proliferators. J Environ Pathol Toxicol Oncol 11:145–149

    CAS  PubMed  Google Scholar 

  36. Chinje E, Kentish P, Jarnot B, George M, Gibson G (1994) Induction of CYP 4A subfamily by perfluorodecanoic acid: the rat and guinea pig as susceptible and non-susceptible species. Toxicol Lett 71:69–75

    Article  CAS  PubMed  Google Scholar 

  37. Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U (2016) The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol 304:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, Corton JC, Abbott BD (2017) Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology 378:37–52

    Article  CAS  PubMed  Google Scholar 

  39. Vanden HJ, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92:476–489

    Article  Google Scholar 

  40. Liu X, Zhu Y, Liu T, Xue Q, Tian F, Yuan Y, Zhao C (2020) Exploring toxicity of perfluorinated compounds through complex network and pathway modeling. J Biomol Struct Dyn 38:2604–2612

    Article  CAS  PubMed  Google Scholar 

  41. Dong T, Peng Y, Zhong N, Liu F, Zhang H, Xu M, Liu R, Han M, Tian X, Jia J, Chang L, Guo L-H, Liu S (2017) Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget 8(31):50911–50920

    Article  PubMed  PubMed Central  Google Scholar 

  42. Donovan J and Brown P (2006) Blood collection, Curr Protoc Immunol, Chapter 1: Unit 1.7.

  43. Heuvel JPV (1996) Perfluorodecanoic acid as a useful pharmacologic tool for the study of peroxisome proliferation. Gen Pharmac 27:1123–1129

    Article  Google Scholar 

  44. Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, Waalkes MP, Abbott BD, Lau C, Corton JC (2008) Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103:46–56

    Article  CAS  PubMed  Google Scholar 

  45. Wolf CJ, Schmid JE, Lau C, Abbott BD (2012) Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARalpha) by perfluoroalkyl acids (PFAAs): further investigation of C4–C12 compounds. Reprod Toxicol 33:546–551

    Article  CAS  PubMed  Google Scholar 

  46. O’Brien JM, Crump D, Mundy L, Chu S, McLaren K, Vongphachan V, Letcher R, Kennedy S (2009) Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate. Toxicol Lett 190(2):134–139

    Article  CAS  PubMed  Google Scholar 

  47. Zhou X, Dong T, Fan Z, Peng Y, Zhou R, Wang X, Song N, Han M, Fan B, Jia J, Liu S (2017) Perfluorodecanoic acid stimulates NLRP3 inflammasome assembly in gastric cells. Sci Rep 7:45468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhiyu W, Wang N, Wang Q, Peng C, Zhang J, Liu P, Ou A, Zhong S, Cordero MD, Lin Y (2016) The inflammasome: an emerging therapeutic oncotarget for cancer prevention. Oncotarget 7:50766–50780

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lamkanf M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 158:1013–1022

    Article  Google Scholar 

  50. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57–64

    Article  CAS  PubMed  Google Scholar 

  51. Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 284:12772–12782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bertrand MJ, Doiron K, Labbe K, Korneluk RG, Barker PA, Saleh M (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30:789–801

    Article  CAS  PubMed  Google Scholar 

  53. Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M (2010) Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11:70–75

    Article  CAS  PubMed  Google Scholar 

  54. Conte D, Holcik M, Lefebvre CA, Lacasse E, Picketts DJ, Wright KE, Korneluk RG (2006) Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol 26:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Labbe K, McIntire CR, Doiron K, Leblanc PM, Saleh M (2011) Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 35:897–907

    Article  CAS  PubMed  Google Scholar 

  56. Dagenais M, Dupaul-Chicoine J, Champagne C, Skeldon A, Morizot A, Saleh M (2016) A critical role for cellular inhibitor of protein 2 (cIAP2) in colitis-associated colorectal cancer and intestinal homeostasis mediated by the inflammasome and survival pathways. Mucosal Immunol 9:146–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by The Open Research Fund of State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2014-08), and Shandong provincial natural science foundation, China (ZR2020QH220).

Funding

The study was supported by The Open Research Fund of State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2014-08), and Shandong provincial natural science foundation, China (ZR2020QH220).

Author information

Authors and Affiliations

Authors

Contributions

SL designed the research and prepared the manuscript; KL, QZ, ZF, SJ and FL performed the experiments and prepared the figures; QL provided testing equipment and assisted in testing.

Corresponding author

Correspondence to Shili Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The mouse experiment of this work was approved by the Ethics Committee of School of Basic Medical Science, Shandong University, Jinan, China (ECSBMSSDU2019-2-70).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zhao, Q., Fan, Z. et al. The toxicity of perfluorodecanoic acid is mainly manifested as a deflected immune function. Mol Biol Rep 49, 4365–4376 (2022). https://doi.org/10.1007/s11033-022-07272-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07272-w

Keywords

Navigation