Skip to main content
Log in

Biochemical and subcellular characterization of a squid hnRNPA/B-like protein 2 in osmotic stress activated cells reflects molecular properties conserved in this protein family

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

We have identified endogenous p65 to be an SDS-stable dimer protein composed of ~ 37 kDa hnRNPA/B-like subunits. We have investigated molecular properties involved in the stability of dimeric form, and their regulation in the transition between monomeric and dimeric forms of hnRNPA/B-like protein 2. We also investigated a cellular property conserved between squid hnRNPA/B-like protein 2 and human hnRNPA1 protein in a neuronal context.

Methods and results

Here we show biochemical properties of a recombinant hnRNPA/B-like protein 2 (rP2) in vitro experiments, as one of p65 subunit. We found that interaction between rP2 and RNA molecules interfered with the dynamics of rP2 dimers formation, involved in disulfide bonds and/or postranslational alterations in distinct stage of SDS-stable dimers formation. In addition, we have performed immunofluorescence in SH-SY5Y cells and observed that the pEGFP-P2 fusion protein was expressed in the nucleus, similar to what is observed for human hnRNPA1 protein.

Conclusion

Our results reinforce the idea that p65 is an SDS-stable dimer. Thus, a deeper understanding between monomeric and dimeric transition dynamic is critical into evolution of several neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated in this study are available in the manuscript. This manuscript is published in the bioRxi as a preprint https://doi.org/10.1101/2021.07.02.450876

Abbreviations

rP2:

Recombinant squid hnRNPA/B-like protein 2

pEGFP-P2:

PEGFP-C1 vector containing the ORF of squid hnRNPA/B-like protein 2

mCherry-P2:

PmCherry-C1 vectors containing the ORF of squid hnRNPA/B-like protein 2

PABP-1:

Poly-A binding protein-1

DND1:

Dead end protein homolog1

hnRNP:

Heterogeneous nuclear ribonucleoprotein

ORF:

Open reading frame

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

RNP:

Ribonucleoprotein

RNP1/RNP2:

Core sequences of RNA recognition motifs

SDS:

Sodium dodecyl sulfate

SG:

Stress granules

BFS:

Bovine fetal serum

FRAP:

Fluorescence recovery after photobleach

References

  1. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  CAS  PubMed  Google Scholar 

  2. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 166(7):239–1256

    Google Scholar 

  3. McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GAV, Velde C (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410

    Article  CAS  PubMed  Google Scholar 

  4. Siomi H, Dreyfuss G (1995) A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 129(3):551–560

    Article  CAS  PubMed  Google Scholar 

  5. Michael WM, Choi M, Dreyfuss G (1995) A nuclear export signal in hnRNP A1: a signal mediated, temperature-dependent nuclear protein export pathway. Cell 83(3):415–422

    Article  CAS  PubMed  Google Scholar 

  6. Lico DT, Lopes GS, Brusco J, Rosa JC, Gould RM, De Giorgis JA, Larson RE (2015) A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons. Neuroscience 300:381–392

    Article  CAS  PubMed  Google Scholar 

  7. Lopes GS, Lico DTP, Rocha RS, Oliveira RR, Sebollela AS, Paco-Larson ML, Larson RE (2019) A phylogenetically conserved hnRNP type A/B protein from squid brain. Neurosci Lett 696:219–224

    Article  CAS  PubMed  Google Scholar 

  8. Gabriel LS, Janaina B, José RC, Roy LE, Diego LTP (2020) Selectively RNA interaction by a hnRNPA/B-like protein at presynaptic terminal of squid neuron. Invertebr Neurosci 20:1–14

    CAS  Google Scholar 

  9. Joshua DN, Gardner LA, Salapa HE, Levin MC (2016) Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 colocalize to stress granules resulting in altered RNA and protein levels in a model of neurodegeneration in multiple sclerosis. J Clin Cell Immunol 7(2):402

    Google Scholar 

  10. George E, Wasiak S, Blandford V, Tong X-K, Serrano A, Fan X, del Rayo M, Sánchez-Carbente FS, Bell AW, Boismenu D, Lacaille J-C, McPherson PS, DesGroseillers L, Sossin WS (2006) Characterization of an RNA granule from developing. BrainMol Cell Proteomics 4:635–651

    Google Scholar 

  11. Purice MD, Taylor JP (2018) Linking hnRNP function to ALS and FTD pathology. Front Neurosci 12:326

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heraviab YB, Van Broeckhovenab C, der Zee J (2020) Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol Dis 134:104639

    Article  CAS  Google Scholar 

  13. Guil S, Long JC, Cáceres JF (2006) hnRNPA1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 26(15):5744–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banani SF, Allyson M, Rice WB, Peeples YL, Jain S, Parker R, Rosen MK (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26(9):668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, Bowen KE, Wadhwa H, Yang P, Rigo F, Taylor JP, Gitler AD, Rothstein JD, Lloyd TE (2018) Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173:958-971.e917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Polymenidou M, Cleveland DW (2017) Biological spectrum of amyotrophic lateral sclerosis prions. Cold Spring Harb Perspect Med 7:a024133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736

    Article  CAS  PubMed  Google Scholar 

  19. Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R (2017) The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68:808-820.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA, Gerbich TM, Smith JA, Crutchley JM, Termini CM, Weeks KM, Myong S, Gladfelter AS (2018) mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. d'Errico, Melanie Meyer-Luehmann (2020) Mechanisms of Pathogenic Tau and Aß Protein Spreading in Alzheimer's Disease. Front Aging Neurosci; 27;12:265.) (Gui X, Luo F, Li Y, Zhou H, Qin Z, Liu Z, Gu J, Xie M, Zhao K, Dai B, Shin WS, He J, He L, Jiang L, Zhao M, Sun B, Li X, Liu C, Li D. (2019) Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun 10(1):2006.)

  22. Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillén-Boixet J, Franzmann TM, Jahnel M, Marrone L, Chang YT, Sterneckert J, Tomancak P, Hyman AA, Alberti S (2018) RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360:918–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buratti E (2018) TDP-43 post-translational modifications in health and disease. Expert Opin Ther Targets 22:279–293

    Article  CAS  PubMed  Google Scholar 

  24. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790

    Article  CAS  PubMed  Google Scholar 

  25. Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Shu S, Wang RR, Liu F, Cui B, Guo XN, Lu CX, Li XG, Liu MS, Peng B, Cui LY, Zhang X (2016) Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87:1763–1769

    Article  CAS  PubMed  Google Scholar 

  28. Liu YC, Chiang PM, Tsai KJ (2013) Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci 14:20079–20111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M, Perkerson RB, Kurti A, Matchett BJ, Mittag T, Temirov J, Hsiung GR, Krieger C, Murray ME, Kato M, Fryer JD, Petrucelli L, Zinman L, Weintraub S, Mesulam M, Keith J, Zivkovic SA, Hirsch-Reinshagen V, Roos RP, Zuchner S, Graff-Radford NR, Petersen RC, Caselli RJ, Wszolek ZK, Finger E, Lippa C, Lacomis D, Stewart H, Dickson DW, Kim HJ, Rogaeva E, Bigio E, Boylan KB, Taylor JP, Rademakers R (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95:808-816.e809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, Parker R (2018) Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep 22:1401–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lico DTP, Rosa JC, DeGiorgis JA, deVasconcelos EJR, Casaletti L, Tauhata SBF, Baqui MMA, Fukuda M, Moreira JE, Larson RE (2010) A novel 65 kDa RNA-binding protein in squid presynaptic terminals. Neuroscience 166:73–83

    Article  CAS  PubMed  Google Scholar 

  32. Chomczynski P, Sacchi N (1987) Single-step method of RNA acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  33. McLellan T (1982) Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem 126:94–99

    Article  CAS  PubMed  Google Scholar 

  34. Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38:494–506

    Article  CAS  PubMed  Google Scholar 

  35. Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindquist S (1981) Regulation of protein synthesis during heat shock. Nature 293:311–314

    Article  CAS  PubMed  Google Scholar 

  37. Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R (2016) Distinct stages in stress granule assembly and disassembly. Elife Trends Biochem Sci 38:494–506

    Google Scholar 

  38. Christopher FL, Lentz A, Mayfield SP (2000) Disulfide bond formation between RNA binding domains is used to regulate mRNA binding activity of the chloroplast poly(A)-binding protein. J Biol Chem 275:8275–8278

    Article  Google Scholar 

  39. Kumari P, Bhavesh NS (2021) Human DND1-RRM2 forms a non-canonical domain swapped dimer. Protein Sci 6:1184–1195

    Article  CAS  Google Scholar 

  40. Levengood JD, Tolbert BS (2018) Idiosyncrasies of hnRNP A1-RNA recognition: can binding mode influence function. Semin Cell Dev Biol 86:150–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu X, Ishizuka T, Bao H-L, Wada K, Takeda Y, Iida K et al (2017) Structure-dependent binding of hnRNPA1 to telomere RNA. J Am Chem Soc 139:7533–7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cieniková Z, Jayne S, Damberger FF, Allain FH-T, Maris C (2015) Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing. RNA 21:1931–1942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gagné M, Deshaies J-E, Sidibé H, Benchaar Y, Arbour D, Dubinski A, Litt G, Peyrard S, Robitaille R, Sephton CF, Vande Velde C (2021) hnRNP A1B, a splice variant of HNRNPA1, is spatially and temporally regulated. Front Neurosci 15:724307

    Article  PubMed  PubMed Central  Google Scholar 

  44. Afroz T, Hock E-M, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z, Plückthun A, Mittl P, Paganetti P, Allain FHT, Polymenidou M (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 8(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rengifo-Gonzalez JC, El Hage K, Clément MJ, Steiner E, Joshi V, Craveur P, Durand D, Pastré D, Bouhss A (2021) The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation. Elife 10:e67605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH, Rohatgi R, Shewmaker F (2018) A single N-terminal hosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37(5):e97452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Aguero T, Jin Z, Owens D, Malhotra A, Newman K, Yang J, Lou KM (2018) Combined functions of two RRMs in dead-end1 mimic helicase activity to promote nanos1 translation in the germline. Mol Reprod Dev 85:896–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    Article  CAS  PubMed  Google Scholar 

  49. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R (2018) RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci USA 115:2734–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Silvia Andrade and Domingos Pitta for expert technical help, and M.Sc Elizabete R. Milani for technical help with confocal microscopy, performed at Laboratório Multiusuário de Microscopia Confocal—LMMC, Fapesp 2004/08868-0. Special thanks to Lexie Friend, PhD, Honorary Fellow School of Chemistry and Molecular Biosciences at the University of Queensland St Lucia, 4072, Australia. She did make suggestions important to the manuscript and my works that it supported my finds in discussion section

Funding

The Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); no specifc grant was received for this Publisher.

Author information

Authors and Affiliations

Authors

Contributions

DTPL (performed experiments biochemical and prepared manuscript); GSL (performed experiments immunofluorescence); MLPL (analyzed data) and REL (designed the experiments). and Contributions Structural the Marine Resources Center of the Marine Biological Laboratory in Woods Hole, MA and f the Centro de Biologia Marinha-CEBIMar, University of São Paulo, São Sebastião, Brazil.

Corresponding author

Correspondence to Diego T. P. Lico.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of conflict of interest.

Ethical approval

The number of animals used has been conformed to ethical guidelines presented by National System of Nature Conservation Units Snuc-Ibama/Brazil with solicitation Nº 53615US and Public Health Service, National Institutes of Health Publication according to Law No. 9,985/2000.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, G.S., Lico, D.T.P. Biochemical and subcellular characterization of a squid hnRNPA/B-like protein 2 in osmotic stress activated cells reflects molecular properties conserved in this protein family. Mol Biol Rep 49, 4257–4268 (2022). https://doi.org/10.1007/s11033-022-07260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07260-0

Keywords

Navigation