Skip to main content

Advertisement

Log in

Identification of appropriate housekeeping genes for gene expression studies in human renal cell carcinoma under hypoxic conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hypoxia pathways are deregulated in clear renal cell carcinoma (ccRCC) because of the loss of the von Hippel-Lindau tumor suppressor function. Quantitative PCR is a powerful tool for quantifying differential expression between normal and cancer cells. Reliable gene expression analysis requires the use of genes encoding housekeeping genes. Therefore, in this study, eight reference candidate genes were evaluated to determine their stability in 786-0 cells under normoxic and hypoxic conditions.

Methods and Results

Four different tools were used to rank the most stable genes—geNorm, NormFinder, BestKeeper, and Comparative Ct (ΔCt), and a general ranking was performed using RankAggreg. According to the four algorithms, the TFRC reference gene was identified as the most stable. There was no agreement among the results from the algorithms for the 2nd and 3rd positions. A general classification was then established using the RankAggreg tool. Finally, the three most suitable reference genes for use in 786-0 cells under normoxic and hypoxic conditions were TFRC, RPLP0, and SDHA.

Conclusions

To the best of our knowledge, this is the first study to identify reliable genes that can be used for gene expression analysis in ccRCC in a hypoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, Grünwald V, Gillessen S, Horwich A (2019) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 30:706–720. https://doi.org/10.1093/annonc/mdz056

    Article  CAS  PubMed  Google Scholar 

  2. Rocha FG, Chaves KC, Chammas R, Peron JP, Rizzo LV, Schor N, Bellini MH (2010) Endostatin gene therapy enhances the efficacy of IL-2 in suppressing metastatic renal cell carcinoma in mice. Cancer Immunol Immunother 59:1357–1365. https://doi.org/10.1007/s00262-010-0865-6

    Article  CAS  PubMed  Google Scholar 

  3. D’Avella C, Abbosh P, Pal SK, Geynisman DM (2020) Mutations in renal cell carcinoma. Urol Oncol 38:763–773. https://doi.org/10.1016/j.urolonc.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  4. Jonasch E, Walker CL, Rathmell WK (2021) Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 17:245–261. https://doi.org/10.1038/s41581-020-00359-2

    Article  CAS  PubMed  Google Scholar 

  5. Büscheck F, Fraune C, Simon R, Kluth M, Hube-Magg C, Möller-Koop C, Sarper I, Ketterer K, Henke T, Eichelberg C, Dahlem R, Wilczak W, Sauter G, Fisch M, Eichenauer T, Rink M (2020) Prevalence and clinical significance of VHL mutations and 3p25 deletions in renal tumor subtypes. Oncotarget 11:237–249. https://doi.org/10.18632/oncotarget.27428

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR (2016) Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 69:646–657. https://doi.org/10.1016/j.eururo.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Ivan M, Kaelin WG (2017) The EGLN-HIF O2-sensing system: Multiple inputs and feedbacks. Mol Cell 66:772–779. https://doi.org/10.1016/j.molcel.2017.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Zhang Q (2018) VHL and hypoxia signaling: Beyond HIF in cancer. Biomedicines 6. https://doi.org/10.3390/biomedicines6010035

  9. Lemma S, Avnet S, Meade MJ, Chano T, Baldini N (2018) Validation of suitable housekeeping genes for the normalization of mRNA expression for studying tumor acidosis. Int J Mol Sci 19. https://doi.org/10.3390/ijms19102930

    Article  Google Scholar 

  10. Lorenzetti WR, Ibelli AMG, Peixoto JO, Mores MAZ, Savoldi IR, Carmo KBD, Oliveira HC, Ledur MC (2018) Identification of endogenous normalizinggenes for expression studies in inguinal ringtissue for scrotal hernias in pigs. PLoS ONE 13:e0204348. https://doi.org/10.1371/journal.pone.0204348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marciano CMM, Ibelli AMG, Peixoto JO, Savoldi IR, do Carmo KB, Fernandes LT, Ledur MC (2020) Stable reference genes for expression studies in breast muscle of normal and white striping-affected chickens. Mol Biol Rep 47:45–53. https://doi.org/10.1007/s11033-019-05103-z

    Article  CAS  PubMed  Google Scholar 

  12. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  13. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  15. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. https://doi.org/10.1186/1471-2199-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pihur V, Datta S, Datta S (2009) RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics 10:62. https://doi.org/10.1186/1471-2105-10-62

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Ding L, Sandford AJ (2005) Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol Biol 6:4. https://doi.org/10.1186/1471-2199-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brym P, Ruść A, Kamiński S (2013) Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet Immunol Immunopathol 153:302–307. https://doi.org/10.1016/j.vetimm.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  20. Arrowsmith S (2021) Identification and validation of suitable reference genes for quantitative real-time PCR gene expression analysis in pregnant human myometrium. Mol Biol Rep 48:413–423. https://doi.org/10.1007/s11033-020-06066-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Zhang Y, Liu Q, Tong H, Zhang T, Gu C, Liu L, Huang S, Yuan H (2021) Selection and validation of appropriate reference genes for RT-qPCR analysis of flowering stages and different genotypes of Iris germanica L. Sci Rep 11:9901. https://doi.org/10.1038/s41598-021-89100-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM (2016) Choosing the right cell line for renal cell cancer research. Mol Cancer 15:83. https://doi.org/10.1186/s12943-016-0565-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Che J, Yao X, Wang C, Zheng J, Guo C (2020) Hypoxia promoted renal cell carcinoma cell migration through regulating lncRNA-ENST00000574654.1. Am J Transl Res 12:3884–3894

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Majidzadeh -AK, Esmaeili R, Abdoli N (2011) TFRC and ACTB as the best reference genes to quantify urokinase plasminogen activator in breast cancer. BMC Res Notes 4:215. https://doi.org/10.1186/1756-0500-4-215

    Article  CAS  Google Scholar 

  25. Iyer G, Wang AR, Brennan SR, Bourgeois S, Armstrong E, Shah P, Harari PM (2017) Identification of stable housekeeping genes in response to ionizing radiation in cancer research. Sci Rep 7:43763. https://doi.org/10.1038/srep43763

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bakhashab S, Lary S, Ahmed F, Schulten HJ, Bashir A, Ahmed FW, Al-Malki AL, Jamal HS, Gari MA, Weaver JU (2014) Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells. G3 (Bethesda) 4:2159–2165. https://doi.org/10.1534/g3.114.013102

    Article  Google Scholar 

  27. Glenn ST, Jones CA, Liang P, Kaushik D, Gross KW, Kim HL (2007) Expression profiling of archival renal tumors by quantitative PCR to validate prognostic markers. Biotechniques 43:639–640. https://doi.org/10.2144/000112562

    Article  CAS  PubMed  Google Scholar 

  28. Hansson J, Lindgren D, Nilsson H, Johansson E, Johansson M, Gustavsson L, Axelson H (2017) Overexpression of functional SLC6A3 in clear cell renal cell carcinoma. Clin Cancer Res 23:2105–2115. https://doi.org/10.1158/1078-0432.CCR-16-0496

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Nuclear and Energy Research Institute - IPEN (process number no. 2018.05.IPEN.08).

Author information

Authors and Affiliations

Authors

Contributions

Luiz Felipe S. Teixeira: Analysis and Writing. Rodrigo Gigliotti: Analysis and Writing. Luana da Silva Ferreira: Analysis and Writing. Maria Helena Bellini: Conceptualization, Design, Analysis, and Writing.

Corresponding author

Correspondence to Maria Helena Bellini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

Not applicable.

Consent to publish

All authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the Journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, L.F.S., Gigliotti, R., da Silva Ferreira, L. et al. Identification of appropriate housekeeping genes for gene expression studies in human renal cell carcinoma under hypoxic conditions. Mol Biol Rep 49, 3885–3891 (2022). https://doi.org/10.1007/s11033-022-07236-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07236-0

Keywords

Navigation