Skip to main content

Genetic variation among pumpkin landraces based on seed qualities and molecular markers



Germplasm identification is an essential connection linking the conservation and exploitation of crop genetic resources in several plant breeding programs. This study highlights the biochemical and molecular variations in a collection of pumpkin genotypes representing four climate zones. The information could help improve germplasm management and sustainable exploitation of the neglected genotypes.

Methods and results

Chemical characterization and genetic diversity among nine Egyptian landraces of pumpkin (Cucurbita moschata Duchesne) were estimated using Diode Array (DDA) Near Infra-Red (NIR) technology and the Inter simple Sequence Repeat markers (ISSR). Pumpkin seeds were collected from various geographical parts of Egypt. The spectroscopic properties of pumpkin seeds were used to quantify the fat, moisture, protein, ash, fiber, and total carbohydrate contents. The ten ISSR primers generated a total number of 46 genotype-specific bands, and the total polymorphism produced in the tested landraces was 63.58%. Based on the ISSR data, the polymorphism analysis divided the nine pumpkin landraces into two main groups, two subgroups, and four sub subgroups. The most diverse pumpkin landraces were Alexandria and Sohag, with a similarity percentage of 49.6%. However, the highest calculated similarity value was 88.3% between Matruh and Gharbia. The resultant genotype-specific bands can be used as markers for future genotypic characterization of pumpkins.


The study results could be helpful in the chemical phenotypic characterization and the parental selection and planning for future breeding programs for pumpkin improvement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.


  1. Wehner TC, Naegele RP, Myers JR, Dhillon NPS, Crosby K (2020) Cucurbits, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  2. Peiretti PG, Meineri G, Gai F, Longato E, Amarowicz R (2017) Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Nat Prod Res 31(18):2178–2182.

    Article  CAS  PubMed  Google Scholar 

  3. Achilonu MC, Nwafor IC, Umesiobi DO, Sedibe MM (2018) Biochemical proximates of pumpkin (Cucurbitaceae spp.) and their beneficial effects on the general well-being of poultry species. J Anim Physiol Anim Nutr 102(1):5–16.

    Article  CAS  Google Scholar 

  4. Dong XJ, Chen JY, Chen SF, Li Y, Zhao XJ (2021) The composition and anti-inflammatory properties of pumpkin seeds. J Food Meas Charact.

    Article  Google Scholar 

  5. Dar AH, Sofi SA, Rafiq S (2017) Pumpkin the functional and therapeutic ingredient: a review. Int J Food Sci Nutr 2(6):165–170

    Google Scholar 

  6. Tlili I, Rouhou HC, Ilahy R, Jedidi E, Bouhlel R, Romdhane L, Ghannem S, Lenucci MS, Siddiqui MW, R’him T, Hdider C (2020) Pumpkin. In: Nayik GA, Gull A (eds) Antioxidants in vegetables and nuts-properties and health benefits. Springer, Singapore, pp 105–126

    Chapter  Google Scholar 

  7. Lebot V, Ndiaye A, Malapa R (2011) Phenotypic characterization of sweet potato [Ipomoea batatas (L.) Lam.] genotypes in relation to prediction of chemical quality constituents by NIRS equations. Plant Breed 130(4):457–463.

    Article  CAS  Google Scholar 

  8. Bisztray GD, Deak T, Seregély ZS, Turza S, Bodor P, Velich I, Kaffka K (2006) NIR—an alternative tool in horticultural biotechnology. Acta Hortic 725:663–668.

    Article  CAS  Google Scholar 

  9. Seregely Z, Deak T, Bisztray GD (2004) Distinguishing melon genotypes using NIR spectroscopy. Chemom Intell Lab Syst 72(2):195–203.

    Article  CAS  Google Scholar 

  10. Pomares-Viciana T, Martínez-Valdivieso D, Font R, Gómez P, del Río-Celestino M (2018) Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy. J Sci Food Agric 98(5):1703–1711.

    Article  CAS  PubMed  Google Scholar 

  11. Alamu OE, Adesokan M, Maziya-Dixon B (2019) Calibration development for nutritional evaluation of yam (Dioscorea sp.) using near-infrared reflectance spectrophotometry (NIRS). Cogent Chem 5(1):1–13.

    Article  CAS  Google Scholar 

  12. Uarrota VG, Segatto C, Voytena AP, Maraschin M, Avila LV, Kazama DC, Coelho CM, Souza CA (2019) Metabolic fingerprinting of water-stressed soybean cultivars by gas chromatography, near-infrared and UV-visible spectroscopy combined with chemometrics. J Agron Crop Sci 205(2):141–156.

    Article  CAS  Google Scholar 

  13. Mady EA, Helaly AA, Abu El-Hamd A, Abdou A, Shanan SA, Craker LE (2013) Genetic diversity assessment of summer squash landraces using molecular markers. Mol Biol Rep 40(7):4269–4274.

    Article  CAS  PubMed  Google Scholar 

  14. Mady EA, Helaly A, Shanan SA, Craker LE (2014) Phylogenetic analysis of Cucurbita pepo using molecular markers. Acta Hortic 1030:139–142.

    Article  Google Scholar 

  15. Abdein MA (2018) Genetic diversity between pumpkin accessions growing in the Northern border region in Saudi Arabia based on biochemical and molecular parameters. Egypt J Bot 58(3):463–476.

    Article  Google Scholar 

  16. Méndez-López A, Sánchez-Vega M, Villanueva-Verduzco C, Rojas-Martínez RI, Rodríguez-Pagaza Y (2018) Genetic diversity in parthenocarpic varieties of pumpkin (Cucurbita pepo L.) by RAPD. Trop Subtrop Agroecosyst 21:447–455

    Google Scholar 

  17. Kiani G, Siahchehreh M (2017) Diversity in squash varieties assessed by ISSR markers. Int J Veg Sci 23(5):430–437.

    Article  Google Scholar 

  18. Dalda-Şekerci A, Karaman K, Yetişir H (2020) Characterization of ornamental pumpkin (Cucurbita pepo L. var. ovifera (L.), Alef.) genotypes: molecular, morphological and nutritional properties. Genet Resour Crop Evol 67(3):533–547.

    Article  CAS  Google Scholar 

  19. Ibrahim EA (2021) Genetic diversity in Egyptian bottle gourd genotypes based on ISSR markers. Ecol Genet Genomics 18:1–6.

    Article  Google Scholar 

  20. Sharma A, Sekhon BS, Kumar R, Sharma S, Mahajan R (2020) Marker-assisted selection in pea breeding. In: Gosal SS, Wani SH (eds) Accelerated plant breeding, vol. 2, vegetable crops. Springer, Cham, pp 137–154.

    Chapter  Google Scholar 

  21. Ouda SA, Norledin TA (2017) Evapotranspiration data to determine agro-climatic zones in Egypt. J Water Land Dev 32(1):79–86.

    Article  Google Scholar 

  22. Dhakre DS, Bhattacharya D (2018) Statistical analysis step-by-step using statistical calculator. Int J Curr Microbiol App Sci 7(11):901–21.

    Article  Google Scholar 

  23. Adawy SS, Hussein EH, El-Khishin D, Saker MM, El-Itriby HA (2002) Genetic variability studies and molecular fingerprinting of some Egyptian date palm (Phoenix dactylifera L.) cultivars, II. RAPD and ISSR profiling. Arab J Biotechnol 5:225–236

    Google Scholar 

  24. Amiryousefi A, Hyvönen J, Poczai P (2018) iMEC: online marker efficiency calculator. Appl Plant Sci 6(6):e01159.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270.

    Article  Google Scholar 

  26. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(W1):W566-570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gohari Ardabili A, Farhoosh R, Haddad Khodaparast MH (2011) Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo Subsp. Pepo var. Styriaka) grown in Iran. J Agric Sci Technol 13:1053–1063

    Google Scholar 

  28. Idouraine A, Kohlhepp EA, Weber CW, Warid WA, Martinez-Tellez JJ (1996) Nutrient constituents from eight lines of naked seed squash (Cucurbita pepo L.). J Agric Food Chem 44(3):721–724.

    Article  CAS  Google Scholar 

  29. Alfawaz MA (2004) Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Re Bull King Saud Univ 129:5–18

    Google Scholar 

  30. Lazos E (1986) Nutritional, fatty acid and oil characteristics of pumpkin and melon seeds. J Food Sci 51:1382–1383.

    Article  CAS  Google Scholar 

  31. Osman KA, Mustafa AM, Ali F, Yonglain Z, Fazhan Q (2012) Genetic variability for yield and related attributes of upland rice genotypes in semi arid zone (Sudan). Afr J Agric Res 7(33):4613–4619

    Article  Google Scholar 

  32. Tuhina-Khatun M, Hanafi MM, Rafii Yusop M, Wong MY, Salleh FM, Ferdous J (2015) Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. BioMed Res Int.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Esmailnia E, Arefrad M, Shabani S, Karimi M, Vafadar F, Dehestani A (2015) Genetic diversity and phylogenetic relationship of Iranian indigenous cucurbits investigated by inter simple sequence repeat (ISSR) markers. Biharean Biol 9(1):47–54

    Google Scholar 

  34. Hamdi K, Palma D, Angelini P, Acciarri N, Tarchoun N, Sestili S (2020) Cucurbita maxima Duch. population analysis: relationship between Tunisian and Italian germplasm. J Hortic Sci Biotechnol 95(4):496–505.

    Article  CAS  Google Scholar 

  35. Xanthopoulou A, Ganopoulos I, Kalivas A, Nianiou-Obeidat I, Ralli P, Moysiadis T, Tsaftaris A, Madesis P (2015) Comparative analysis of genetic diversity in Greek genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust J Crop Sci 9(1):14–21.

    Article  CAS  Google Scholar 

  36. El-Hadi A, El-Aziz A, Abd Alla M, Ashak M (2017) Molecular and phenotypic evaluation of some summer squash inbred lines. J Agric Chem Biotechnol 8(12):281–287.

    Article  Google Scholar 

  37. Yun TH, Zheng DJ, Xie LS, Deng CZ (2013) Analysis of genetic specificity and DNA fingerprinting establishment for the Hainan island landraces of Cucurbita moschata. J Plant Genet Resour 14(4):679–685

    Google Scholar 

  38. El-Adl AM, Abd El-Hadi AH, Fathy HM, Abdein MA (2012) Molecular genetic evaluation of seven varieties of summer squash. J Am Sci 8(5):41–48.

    Article  Google Scholar 

  39. Han Y (2014) A new metric for parental selection in plant breeding. MS Thesis. Iowa State University, Ames, Iowa. 13784. Accessed 11 Nov 2021

Download references


This research was supported by the Department of Environmental Conservation, University of Massachusetts, Amherst, USA and Mission Sector, Ministry of Higher Education, Egypt.

Author information

Authors and Affiliations



All the authors contributed to the collection of references, the contents of the article, and the charts.

Corresponding author

Correspondence to Timothy O. Randhir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2105 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mady, E., Ibrahim, S.D., Randhir, R. et al. Genetic variation among pumpkin landraces based on seed qualities and molecular markers. Mol Biol Rep 49, 3863–3873 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: