Skip to main content

Advertisement

Log in

Detection of nucleotide variants in FCGRT (Fc fragment of IgG, receptor, transporter, alpha) gene and their influence on colostral IgG concentration in Indian water buffalo (Bubalus bubalis)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The neonatal Fc receptors (FcRn) mediate the transfer of immunoglobulin G (IgG) molecules from a dam’s circulation to the colostrum produced by it immediately after parturition. In ruminants, the calves born are agammaglobulinemic therefore, ingestion of colostrum with high concentration of IgG imparts passive immunity to the newborn. The FcRn molecule is a heterodimer, coded by FCGRT (Fc fragment of IgG Receptor Transporter neonatal) and B2M (Beta 2 microglobulin) genes. Present study attempted to identify single nucleotide polymorphisms (SNPs) in the FCGRT gene in 40 buffaloes of Murrah breed and evaluated the association of these nucleotide variations and haplotypes with IgG concentration in their colostrum.

Methods and results

Animals producing colostrum with high IgG and low IgG levels were identified by indirect ELISA and selected. SNPs were detected in the FCGRT gene sequence of selected animals by amplifying it in nine fragments covering all exons (with flanking introns) followed by PCR-single strand conformational polymorphism (PCR-SSCP). A total of nine SNPs were observed of which seven were present in flanking introns and two in exon 4 of the gene. The SNP A75G was non-synonymous and produced an amino acid change from isoleucine to valine. The exonic SNPs and corresponding haplotypes were found to be significantly (P < 0.01 and 0.05 respectively) associated with colostral IgG concentration based on Odds ratios at 95% confidence interval.

Conclusion

Polymorphism in FCGRT gene is found to be associated with IgG concentration in colostrum and identification of females with desirable variations may prevent failure of passive transfer in neonatal ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All relevant data and material for the study was provided by competent authorities at the Institute ICAR-IVRI.

Code availability

Not applicable.

Consent for publication

Due consent was taken from all authors and competent authority for publication of the work.

References

  1. Abd El-Fattah AM, Abd Rabo FH, El-Dieb SM, El-Kashef HA (2012) Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet Res 8:1–7

    Article  Google Scholar 

  2. Blom JY (1982) The relationship between serum immunoglobulin values and incidence of respiratory diseases and enteritis in calves. Nord Vet Med 34:276–284

    CAS  PubMed  Google Scholar 

  3. Braun RK, Tennant BC (1983) The relationship of serum globulin levels of assembled neonatal calves to mortality caused by enteric diseases (Escherichia coli). Agric Pract 4:14–15

    Google Scholar 

  4. Bush LJ, Staley TE (1980) Absorption of colostral immunoglobulins in newborn calves. J Dairy Sci 63:672–680

    Article  CAS  PubMed  Google Scholar 

  5. Butler JE (1974) Immunoglobulins of the mammary secretions. In: Larson BL, Smith VR (eds) Lactation: a comprehensive treatise, vol 1. Academic, New York, p 271

    Google Scholar 

  6. Cejas RB, Ferguson DC, Quiñones-Lombraña A, Bard JE, Blanco JG (2019) Contribution of DNA methylation to the expression of FCGRT in human liver and myocardium. Sci Rep 9:8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaudhary R, Kumar S, Yathish HM, Mishra C, Chauhan A, Sahoo NR (2016) Estimation of Immunoglobulin G levels in colostrum of Murrah buffaloes. Int J Sci Environ Technol 5:2003–2007

    Google Scholar 

  8. Chaudhary R, Kumar S, Yathish HM, Sivakumar A, Mishra C, Kumar A, Chauhan A, Sivamani B, Sahoo NR (2016) Identification of SNPs in Beta 2 Microglobulin (β2M) gene and their association with IgG concentration in neonatal buffalo calves. J Pure Appl Microbiol 10:1387–1394

    CAS  Google Scholar 

  9. Chaudhary R, Kumar S, Agrawal S, Kumar A, Sahoo NR, Chauhan A (2017) Effect of non genetic factors on the concentration of immunoglobulin G in the colostrum of Murrah buffaloes. Int J Livest Res 7:188–194

    CAS  Google Scholar 

  10. Chaudhary R, Kumar S, Yathish HM, Sivakumar A, Mishra C, Kumar A, Chauhan A, Sivamani B, Sahoo NR (2018) Nucleotide variability in Beta 2 Microglobulin (β2M) gene and its association with colostral IgG levels in buffaloes (Bubalus bubalis). Indian J Anim Res 52:51–55

    Google Scholar 

  11. Dang AK, Kapila S, Purohit M, Singh C (2009) Changes in colostrum of Murrah buffaloes after calving. Trop Anim Health Prod 41:1213–1217

    Article  CAS  PubMed  Google Scholar 

  12. Doleschall M, Zhao Y, Mayer B, Hammarström L, Kacskovics I (2005) Isolation of the gene encoding the bovine neonatal Fc receptor. Vet Immunol Immunopathol 108:145–150

    Article  CAS  PubMed  Google Scholar 

  13. Duhamel GE, Osburn BI (1984) Neonatal immunity in cattle. Bov Pract 19:71–78

    Google Scholar 

  14. Duncan JR, Wilkie BN, Hiestand F, Winter AJ (1972) The serum and secretory immunoglobulins of cattle: characterization and quantitation. J Immunol 108(4):965–976

    CAS  PubMed  Google Scholar 

  15. Giammarco M, Chincarini M, Fusaro I, Manetta AC, Contri A, Gloria A, Lanzoni L, Mammi LME, Ferri N, Vignola G (2021) Evaluation of Brix refractometry to estimate immunoglobulin G content in buffalo colostrum and neonatal calf serum. Animals 11:2616

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ginel PJ, Margarito JM, Molleda JM, Lopez R, Novales M, Bernadina WE (1996) Biotin–avidin amplified enzyme-linked immunosorbent assay (ELISA) for the measurement of canine serum IgA, IgG and IgM. Res Vet Sci 60(2):107–110

    Article  CAS  PubMed  Google Scholar 

  17. Godden SM, Haines DM, Hagman D (2009) Improving passive transfer of immunoglobulins in calves. I: dose effect of feeding a commercial colostrum replacer. J Dairy Sci 92(4):1750–1757

    Article  CAS  PubMed  Google Scholar 

  18. Gomes V, Madureira KM, Soriano S, Libera AM, Blagitz MG, Benesi FJ (2011) Factors affecting immunoglobulin concentration in colostrum of healthy Holstein cows immediately after delivery. Pesqui Vet Bras 31:53–56

    Article  Google Scholar 

  19. Ishii-Watabe A, Saito Y, Suzuki T, Tada M, Ukaji M, Maekawa K, Yamaguchi T (2010) Genetic polymorphisms of FCGRT encoding FcRn in a Japanese population and their functional analysis. Drug Metab Pharmacokinet 25(6):578–587

    Article  CAS  PubMed  Google Scholar 

  20. Johnsen JF, Sørby J, Mejdell CM, Sogstad ÅM, Nødtvedt A, Holmøy IH (2019) Indirect quantification of IgG using a digital refractometer, and factors associated with colostrum quality in Norwegian Red Cattle. Acta Vet Scand 61:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kehoe SI, Heinrichs AJ, Moody ML, Jones CM, Long MR (2011) Comparison of immunoglobulin G concentrations in primiparous and multiparous bovine colostrum. Prof Anim Sci 27:176–180

    Article  Google Scholar 

  22. Laegreid WW, Heaton MP, Keen JE, Grosse WM, Chitko-McKown CG, Smith TP, Keele JW, Bennett GL, Besser TE (2002) Association of bovine neonatal Fc receptor a-chain gene (FCGRT) haplotypes with serum IgG concentration in newborn calves. Mamm Genome 13:704–710

    Article  CAS  PubMed  Google Scholar 

  23. Larson BL, Heary HL Jr, Devery JE (1980) Immunoglobulin production and transport by the mammary gland. J Dairy Sci 63(4):665–671

    Article  CAS  PubMed  Google Scholar 

  24. Mastellone V, Massimini G, Pero ME, Cortese L, Piantedosi D, Lombardi P, Britti D, Avallone L (2011) Effects of passive transfer status on growth performance in buffalo calves. Asian–Australas J Anim Sci 24(7):952–956

    Article  Google Scholar 

  25. Mayer B, Doleschall M, Bender B, Bartyik J, Bosze Z, Frenyo LV, Kacskovics I (2005) Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J Dairy Res 72:107–112

    Article  CAS  PubMed  Google Scholar 

  26. Moore M, Tyler JW, Chigerwe M, Dawes ME, Middleton JR (2005) Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. J Am Vet Med Assoc 226:1375–1377

    Article  PubMed  Google Scholar 

  27. Morrill K, Conrad E, Lago A, Campbell J, Quigley J, Tyler H (2012) Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J Dairy Sci 95(7):3997–4005

    Article  CAS  PubMed  Google Scholar 

  28. Murphy BM, Drennan MJ, O’Mara FP, Earley B (2005) Cow serum and colostrum immunoglobulin (IgG1) concentration of five suckler cow breed types and subsequent immune status of their calves. Ir J Agric Food Res 44(2):205–213

    CAS  Google Scholar 

  29. Norheim K, Simensen E, Gjestang KE (1985) The relationship between serum IgG levels and age, leg injuries, infections and weight gains in dairy calves. Nord Vet Med 37:113–120

    CAS  PubMed  Google Scholar 

  30. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphism of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oyeniyi OO, Hunter AG (1978) Colostral constituents including immunoglobulins in the first three milkings postpartum. J Dairy Sci 61:44–48

    Article  CAS  PubMed  Google Scholar 

  32. Passot C, Azzopardi N, Renault S, Baroukh N, Arnoult C, Ohresser M, Boisdron-Celle M, Gamelin E, Watier H, Paintaud G, Gouilleux-Gruart V (2013) Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs 5(4):614–619

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patel S, Gibbons J, Wathes DC (2014) Ensuring optimal colostrum transfer to newborn dairy calves. Cattle Pract 22(1):95–104

    Google Scholar 

  34. Sachs UJ, Socher I, Braeunlich CG, Kroll H, Bein G, Santoso S (2006) A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology 119(1):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  36. Sayed-Ahmed A, Kassab M, Abd-Elmaksoud A, Elnasharty M, El-Kirdasy A (2010) Expression and immunohistochemical localization of the neonatal Fc receptor (FcRn) in the mammary glands of the Egyptian water buffalo. Acta histochem 112:383–391

    Article  CAS  PubMed  Google Scholar 

  37. Simister NE, Ahouse JC (1996) The structure and evolution of FcRn. Res Immunol 147:333–337

    Article  CAS  PubMed  Google Scholar 

  38. Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  CAS  PubMed  Google Scholar 

  39. Souza DCD, da Silva DG, Fonseca LCC, de Castro FL, Monteiro BM, Bernardes O, Viana RB, Fagliari JJ (2020) Passive immunity transfer in water buffaloes (Bubalus bubalis). Front Vet Sci 7:247

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian ZH, Shi F, Zhong FG, Bai DP, Zhang XY (2015) Analysis of FCGRT gene polymorphism in indigenous Chinese sheep and its association with colostrum IgG concentration. Genet Mol Res 14:2461–2470

    Article  CAS  PubMed  Google Scholar 

  41. Tizard IR (1996) Veterinary immunology: an introduction, 5th edn. Saunders, Philadelphia

    Google Scholar 

  42. Uno Y, Utoh M, Iwasaki K (2014) Polymorphisms of neonatal Fc receptor in cynomolgus and rhesus macaques. Drug Metab Pharmacokinet 29(5):427–430

    Article  CAS  PubMed  Google Scholar 

  43. Verma UK, Kumar S, Ghosh AK, Kumar S, Barwal RS, Sahi BN (2018) Determination of immunoglobulin G (IgG) concentration in buffalo colostrum and serum of new born calves by indirect ELISA. J Pharmacogn Phytochem 7:1233–1235

    CAS  Google Scholar 

  44. Virtala AM, Gröhn YT, Mechor GD, Erb HN (1999) The effect of maternally derived immunoglobulin G on the risk of respiratory disease in heifers during the first 3 months of life. Prev Vet Med 39:25–37

    Article  CAS  PubMed  Google Scholar 

  45. White DG, Andrews AH (1986) Adequate concentration of circulating colostral proteins for market calves. Vet Rec 119:112–114

    Article  CAS  PubMed  Google Scholar 

  46. Windeyer MC, Leslie KE, Godden SM, Hodgins DC, Lissemore KD, LeBlanc SJ (2014) Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev Vet Med 113:231–240

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Gou J, Li-min L (2001) Determination of IgG in bovine colostrum. China Dairy Ind 56:178–182

    Google Scholar 

  48. Zhang R, Zhao Z, Zhao Y, Kacskovics I, Ejik MV, Groot ND, Li N, Hammarstrom LV (2009) Association of FcRn heavy chain encoding gene (FCGRT) polymorphisms with IgG content in bovine colostrum. Anim Biotechnol 20:242–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to The I/C Cattle and Buffalo Farm, ICAR-Indian Veterinary Research Institute, Izatnagar for providing intellectual inputs and physical resources.

Funding

This study was funded by Director, ICAR-Indian Veterinary Research Institute, Izatnagar.

Author information

Authors and Affiliations

Authors

Contributions

SK: Conceptualization, Funding acquisition, Writing—review and editing. SA: Formal analysis and investigation, Writing—original draft preparation. RC: Methodology, Investigation. AC, AK: Conceptualization, Supervision. SB: Methodology.

Corresponding author

Correspondence to Subodh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Approval was taken from Institutional Animal Ethics Committee prior to blood collection.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Kumar, S., Chaudhary, R. et al. Detection of nucleotide variants in FCGRT (Fc fragment of IgG, receptor, transporter, alpha) gene and their influence on colostral IgG concentration in Indian water buffalo (Bubalus bubalis). Mol Biol Rep 49, 3773–3781 (2022). https://doi.org/10.1007/s11033-022-07217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07217-3

Keywords

Navigation