Skip to main content

Advertisement

Log in

Downregulation of metallothionein 2A reduces migration, invasion and proliferation activities in human squamous cell carcinoma cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The invasive behaviour of squamous cell carcinoma (SCC), a common malignant tumour of the mouth, is a process mediated by cell proliferation, extracellular matrix proteolysis and other factors. Studies have shown a potential relationship between growth factors, metallothionein 2A (MT2A) and matrix metalloproteinase (MMP) activation in malignant tumours. The aim of this study was to downregulate MT2A in cells (Cal27) derived from human squamous cell carcinoma.

Methods

Cal27 cells with reduced MT2A were subjected to proliferation, migration and invasion assays. Immunofluorescence and western blot confirmed MT2A depletion by siRNA. Growth curve assays assessed cell proliferation. Indirect immunofluorescence analysed the expression of MT2A, MMP-2, MMP-9, epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), tumour necrosis factor alpha (TNF-α) and Ki67. Zymography evaluated the effects of MT2A silencing on MMP-2 and -9 expression. Migration and invasion activities were evaluated using migration and invasion assays.

Results

CAL27 cells displayed MT2A, MMP-2, MMP-9, EGF, TGF-α, TNF-α and Ki67. MT2A depletion decreased MMP-9, EGF, TGF-α and Ki67 protein levels, while increasing TNF-α.

Conclusions

MT2A downregulation reduced cell proliferation, migration and invasion activities. Therefore, MT2A has an important role in cell proliferation, migration and invasion in human oral SCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated or analysed during the current study are available from the corresponding author on reasonable request. Supplementary information is available for this paper (see Supplementary Information file).

Abbreviations

EGF:

Epidermal growth factor

ECM:

Extracellular matrix

FBS:

Foetal bovine serum

MMP:

Matrix metalloproteinase

MT:

Metallothionein

MT2A:

Metallothionein 2A

SCC:

Squamous cell carcinoma

TGF-α:

Transforming growth factor alpha

TNF-α:

Tumour necrosis factor alpha

References

  1. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ (2017) World health organisation classification of head and neck tumours, 4th edn. IARC Press, Lyon

    Google Scholar 

  2. Pereira AL, Veras SS, Silveira EJ, Seabra FR, Pinto LP, Souza LB et al (2005) The role of matrix extracellular proteins and metalloproteinases in head and neck carcinomas: an updated review. Braz J Otorhinolaryngol 71(1):81–86. https://doi.org/10.1016/s1808-8694(15)31289-1

    Article  PubMed  Google Scholar 

  3. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232. https://doi.org/10.1016/1040-8428(94)00144-i

    Article  CAS  PubMed  Google Scholar 

  4. Myoung H, Kim MJ, Lee JH, Ok YJ, Paeng JY, Yun PY (2006) Correlation of proliferative markers (Ki-67 and PCNA) with survival and lymph node metastasis in oral squamous cell carcinoma: a clinical and histopathological analysis of 113 patients. Int J Oral Maxillofac Surg 35(11):1005–1010. https://doi.org/10.1016/j.ijom.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  5. Coutinho-Camillo CM, Lourenço SV, Nishimoto IN, Kowalski LP, Soares FA (2010) Nucleophosmin, p53, and Ki-67 expression patterns on an oral squamous cell carcinoma tissue microarray. Hum Pathol 41(8):1079–1086. https://doi.org/10.1016/j.humpath.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  6. van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408. https://doi.org/10.1634/theoncologist.11-4-397

    Article  PubMed  Google Scholar 

  7. Ribeiro AL, Nobre RM, Rocha GC, de Souza Lobato IH, de Melo Alves Junior S, Jaeger RG, et al (2011) Expression of metallothionein in ameloblastoma. A regulatory molecule? J Oral Pathol Med 40(6):516–519. https://doi.org/10.1111/j.1600-0714.2011.01025.x

    Article  PubMed  Google Scholar 

  8. Siqueira AS, Carvalho MR, Monteiro AC, Freitas VM, Jaeger RG, Pinheiro JJ (2010) Matrix metalloproteinases, TIMPs and growth factors regulating ameloblastoma behaviour. Histopathology 57(1):128–137. https://doi.org/10.1111/j.1365-2559.2010.03596.x

    Article  PubMed  Google Scholar 

  9. Kim HG, Kim JY, Han EH, Hwang YP, Choi JH, Park BH et al (2011) Metallothionein-2A overexpression increases the expression of matrix metalloproteinase-9 and invasion of breast cancer cells. FEBS Lett 585(2):421–428. https://doi.org/10.1016/j.febslet.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  10. da Rosa MR, Falcão AS, Fuzii HT, da Silva Kataoka MS, Ribeiro AL, Boccardo E et al (2014) EGFR signaling downstream of EGF regulates migration, invasion, and MMP secretion of immortalized cells derived from human ameloblastoma. Tumour Biol 35(11):11107–11120. https://doi.org/10.1007/s13277-014-2401-3

    Article  CAS  PubMed  Google Scholar 

  11. Navarini NF, Araújo VC, Brown AL, Passador-Santos F, Souza IF, Napimoga MH et al (2015) The EGF signaling pathway influences cell migration and the secretion of metalloproteinases by myoepithelial cells in pleomorphic adenoma. Tumour Biol 36(1):205–211. https://doi.org/10.1007/s13277-014-2624-3

    Article  CAS  PubMed  Google Scholar 

  12. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233. https://doi.org/10.1038/nrm2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carpenè E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(Suppl 1):35–39. https://doi.org/10.1016/j.jtemb.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  15. King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(2):679S-S684. https://doi.org/10.3945/ajcn.110.005744

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sinduja P, Ramani P, Gheena S, Ramasubramanian A (2020) Expression of metallothionein in oral squamous cell carcinoma: A systematic review. J Oral Maxillofac Pathol 24(1):143–147. https://doi.org/10.4103/jomfp.JOMFP_137_19

    Article  PubMed  PubMed Central  Google Scholar 

  17. Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A et al (2011) Metallothionein expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patient survival. Histopathology 59(3):514–525. https://doi.org/10.1111/j.1365-2559.2011.03947.x

    Article  PubMed  Google Scholar 

  18. Cherian MG, Jayasurya A, Bay BH (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 533(1–2):201–209. https://doi.org/10.1016/j.mrfmmm.2003.07.013

    Article  CAS  PubMed  Google Scholar 

  19. Brazão-Silva MT, Rodrigues MF, Eisenberg AL, Dias FL, de Castro LM, Nunes FD et al (2015) Metallothionein gene expression is altered in oral cancer and may predict metastasis and patient outcomes. Histopathology 67(3):358–367. https://doi.org/10.1111/his.12660

    Article  PubMed  Google Scholar 

  20. Jin R, Chow VT, Tan PH, Dheen ST, Duan W, Bay BH (2002) Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis 23(1):81–86. https://doi.org/10.1093/carcin/23.1.81

    Article  CAS  PubMed  Google Scholar 

  21. Lim D, Jocelyn KM, Yip GW, Bay BH (2009) Silencing the Metallothionein-2A gene inhibits cell cycle progression from G1- to S-phase involving ATM and cdc25A signaling in breast cancer cells. Cancer Lett 276(1):109–117. https://doi.org/10.1016/j.canlet.2008.10.038

    Article  CAS  PubMed  Google Scholar 

  22. Ostrakhovitch EA, Song YP, Cherian MG (2016) Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. J Trace Elem Med Biol 35:18–29. https://doi.org/10.1016/j.jtemb.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Liu H, Chen W, Yang T, Zhang W (2014) EOLA1 protects lipopolysaccharide induced IL-6 production and apoptosis by regulation of MT2A in human umbilical vein endothelial cells. Mol Cell Biochem 395(1–2):45–51. https://doi.org/10.1007/s11010-014-2110-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yap X, Tan HY, Huang J, Lai Y, Yip GW, Tan PH et al (2009) Over-expression of metallothionein predicts chemoresistance in breast cancer. J Pathol 217(4):563–570. https://doi.org/10.1002/path.2489

    Article  CAS  PubMed  Google Scholar 

  25. Werynska B, Pula B, Muszczynska-Bernhard B, Gomulkiewicz A, Piotrowska A, Prus R et al (2013) Metallothionein 1F and 2A overexpression predicts poor outcome of non-small cell lung cancer patients. Exp Mol Pathol 94(1):301–308. https://doi.org/10.1016/j.yexmp.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379. https://doi.org/10.1038/35077241

    Article  CAS  PubMed  Google Scholar 

  27. Radisky ES, Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15(2):201–212. https://doi.org/10.1007/s10911-010-9177-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grauzam S, Brock AM, Holmes CO, Tiedeken JA, Boniface SG, Pierson BN et al (2018) NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 9(39):25503–25516. https://doi.org/10.18632/oncotarget.25347

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hong SD, Hong SP, Lee JI, Lim CY (2000) Expression of matrix metalloproteinase-2 and -9 in oral squamous cell carcinomas with regard to the metastatic potential. Oral Oncol 36(2):207–213. https://doi.org/10.1016/s1368-8375(99)00088-3

    Article  CAS  PubMed  Google Scholar 

  30. Piyathilake CJ, Frost AR, Manne U, Weiss H, Bell WC, Heimburger DC et al (2002) Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clin Cancer Res 8(3):734–744

    CAS  PubMed  Google Scholar 

  31. Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC et al (2017) Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene 36(16):2228–2242. https://doi.org/10.1038/onc.2016.371

    Article  CAS  PubMed  Google Scholar 

  32. Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ et al (2011) Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem 112(9):2508–2517. https://doi.org/10.1002/jcb.23175

    Article  CAS  PubMed  Google Scholar 

  33. Singh B, Coffey RJ (2014) From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 28:12–21. https://doi.org/10.1016/j.semcdb.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Florence ME, Massuda JY, Soares TC, Stelini RF, Poppe LM, Bröcker EB et al (2015) p53 immunoexpression in stepwise progression of cutaneous squamous cell carcinoma and correlation with angiogenesis and cellular proliferation. Pathol Res Pract 211(10):782–788. https://doi.org/10.1016/j.prp.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  35. Dong C, Wei KJ, Zhang WB, Sun H, Pan HY, Zhang L (2015) LATS2 induced by TNF-alpha and inhibited cell proliferation and invasion by phosphorylating YAP in oral squamous cell carcinoma. J Oral Pathol Med 44(6):475–481. https://doi.org/10.1111/jop.12317

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki T, Hiroki K, Yamashita Y (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int 2013:546318. https://doi.org/10.1155/2013/546318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zulijani A, Dekanić A, Ćabov T, Jakovac H (2021) Metallothioneins and megalin expression profiling in premalignant and malignant oral squamous epithelial lesions. Cancers (Basel) 13(18):4530. https://doi.org/10.3390/cancers13184530

    Article  CAS  Google Scholar 

  38. Gioanni J, Fischel JL, Lambert JC, Demard F, Mazeau C, Zanghellini E et al (1988) Two new human tumour cell lines derived from squamous cell carcinomas of the tongue: establishment, characterisation and response to cytotoxic treatment. Eur J Cancer Clin Oncol 24(9):1445–1455. https://doi.org/10.1016/0277-5379(88)90335-5

    Article  CAS  PubMed  Google Scholar 

  39. Aquime JRHS, Zampieri LCDP, Kataoka MSDS, Ribeiro NAB, Jaeger RG, da Silva AL et al (2020) Metallothionein expression and its influence on the in vitro biological behavior of mucoepidermoid carcinoma. Cells 9(1):157. https://doi.org/10.3390/cells9010157

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was funded by FAPESPA (Foundation for Research Support of the State of Pará) linked to the State Secretariat for Development, Science and Technology, grant number 006/2016.

Author information

Authors and Affiliations

Authors

Contributions

J.J.V.P. and S.M.A.J performed the conceptualization, formal analysis and project administration. M.S.S.K., J.J.V.P. and S.M.A.J. defined the methodology and provided resources. M.S.S.K. and J.J.V.P. validated the project. A.M.D., R.P.M, and R. G. J. performed the investigation and wrote the main manuscript text. A.M.D., J.J.V.P. and S.M.A.J. were responsible for data curation and funding acquisition. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to João de Jesus Viana Pinheiro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This research was conducted in full accordance with ethical principles and was approved by the Ethics Committee on Research in Human Beings of the Institute of Health Sciences of the Federal University of Pará (Protocol Number 1.593.119).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.M., de Mendonça, R.P., da Silva Kataoka, M.S. et al. Downregulation of metallothionein 2A reduces migration, invasion and proliferation activities in human squamous cell carcinoma cells. Mol Biol Rep 49, 3665–3674 (2022). https://doi.org/10.1007/s11033-022-07206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07206-6

Keywords

Navigation