Skip to main content
Log in

SAHA induce hippo pathway in CCA cells without increasing cell proliferation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cholangiocarcinoma is a malignant tumor originating from bile duct epithelial cells. Since tumor metastasis is associated with poor prognosis and short-term survival of patients, there is an urgent need for alternative therapeutic approaches for CCA. Because of that reason, we aimed to investigate effect of SAHA which is known as HDAC inhibitor on extrahepatic cholangiocarcinoma cell line (TFK-1).

Methods

Cell cycle was measured by Muse Cell Analyzer. YAP, TAZ, TGF-β protein levels were determined by western-blotting method. TEAD (1–3), TIMP2 and TIMP3 genes level were determined by real-time PCR analysis.

Results

We have seen the positive effects of SAHA on the TFK-1 cell line as it reduces cell viability and arresting cells in the G0/G1 phase. We also observed the negative effects of SAHA, as it increases the expression levels of YAP, TAZ, TGF-β protein and TEAD (1–3) gene. We also found that SAHA reduced the expression levels of TIMP2 and TIMP3 in TFK-1 cells, but was not statistically significant.

Conclusions

Although observing its antiproliferative effects, these negative effects may be related to the cells being resistant to the drug or the remaining cells having a more aggressive phenotype. Therefore, we think that caution should be exercised in the use of this drug for CCA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esposito I, Schirmacher P (2008) Pathological aspects of cholangiocarcinoma. HPB (Oxford) 10:83–86

    Article  CAS  Google Scholar 

  2. Trinh SX, Nguyen HT, Saimuang K, Prachayasittikul V, Chan W (2017) Metformin inhibits migration and invasion of cholangiocarcinoma. Cells Asian Pac J Cancer 18:473–477

    Google Scholar 

  3. Kanwala R, Gupta S (2012) Epigenetic modifications in cancer. Clin Genet 81:303–311

    Article  CAS  Google Scholar 

  4. Gallinari P, Marco SD, Jones P, Pallaoro M, Steinkühler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17:195–211

    Article  CAS  PubMed  Google Scholar 

  5. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Tian Y, Zhu WG (2020) The roles of histone deacetylases and their ınhibitors in cancer therapy. Front Cell Dev Biol 8:576946

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pant K, Peixoto E, Richard S, Gradilone SA (2020) Role of histone deacetylases in carcinogenesis: potential role in cholangiocarcinoma. Cells 9(3):780

    Article  CAS  PubMed Central  Google Scholar 

  10. Fouladi M (2006) Histone deacetylase inhibitors in cancer therapy. Cancer Invest 24:521–527

    Article  CAS  PubMed  Google Scholar 

  11. Suraweera A, Byrne KJO, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 13:2318–2322

    CAS  Google Scholar 

  13. Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH (2012) Histone deacetylase ınhibitors ınduce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 7:e45045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan DJ (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  17. Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E (2012) A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 31:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saab S, Chang OSS, Nagaoka K, Hung MC, Yamaguchi H (2019) The potential role of YAP in Axl-mediated resistance to EGFR tyrosine kinase inhibitors. Am J Cancer Res 9:2719–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hiemer SE, Szymaniak AD, Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289:13461–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Massagué J (2008) TGFβ in cancer. Cell 134:215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leivonen SK, Lazaridis K, Decock J, Chantry A, Edwards DR, Kähäri VM (2013) TGF-β-elicited ınduction of tissue ınhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts ınvolves complex ınterplay between smad3, p38α, and ERK1/2. PLoS One 8:e57474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barillari G (2020) The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process. Int J Mol Sci 21:4526

    Article  CAS  PubMed Central  Google Scholar 

  23. Başkol G, Özel M, Uçar Ç, Doğru BN, Yüksek EH, Güneş F, Başkol M (2019) SAHA modulates cell proliferation, colony forming and epithelial-mesenchymal transition in CCA cells. Turk J Biochem 44:70–77

    Article  CAS  Google Scholar 

  24. Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rasappan P, Rathinavelu A (2019) Cell Cycle Arrest and Cytotoxic Effects of SAHA and RG7388 Mediated through p21WAF1/CIP1 and p27KIP1 in Cancer Cells. Medicina (Kaunas) 55:30

    Article  Google Scholar 

  25. Sugihara T, Isomoto H, Gores G, Smoot R (2019) YAP and the Hippo pathway in cholangiocarcinoma. J Gastroenterol 54:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29:783–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Seto E (2016) HDACs and HDAC ınhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:026831

    Article  CAS  Google Scholar 

  29. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stimson L, Wood V, Khan O, Fotheringham S, La Thangue NB (2009) HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol 20:1293–1302

    Article  CAS  PubMed  Google Scholar 

  31. He J, Yao W, Wang J, Schemmer P, Yang Y, Liu Y, Qian Y, Qi W, Zhang J, Shen Q, Yang T (2016) TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors. Oncotarget 7:75441–75456

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fröhlich LF, Mrakovcic M, Smole C, Zatloukal K (2016) Molecular mechanism leading to SAHA-induced autophagy in tumor cells: evidence for a p53-dependent pathway. Cancer Cell Int 16:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi XY, Ding W, Li TQ, Zhang YX, Zhao SC (2017) Histone deacetylase (HDAC) inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), induces apoptosis in prostate cancer cell lines via the Akt/FOXO3a signaling pathway. Med Sci Monit 23:5793–5802

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang YC, Yang X, Xing LH, Kong WZ (2013) Effects of SAHA on proliferation and apoptosis of hepatocellular carcinoma cells and hepatitis B virus replication. World J Gastroenterol 19:5159–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pobbati AV, Hong W (2020) A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 10:3622–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M, Orsini V, Jurisic G, Megel P, Makowska Z, Agarinis C, Tornillo L, Bouwmeester T, Ruffner H, Bauer A, Parker CN, Schmelzle T, Terracciano LM, Heim MH, Tchorz JS (2015) YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62:1497–1510

    Article  CAS  PubMed  Google Scholar 

  37. Hao Y, Baker D, Dijke P (2019) TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20:2767

    Article  CAS  PubMed Central  Google Scholar 

  38. Ling HH, Kuo CC, Lin BX, Huang YH, Lin CW (2017) Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res 350:218–225

    Article  CAS  PubMed  Google Scholar 

  39. Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J (2013) Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta 1833:663–671

    Article  CAS  PubMed  Google Scholar 

  40. Basu D, Reyes-Múgica M, Rebbaa A (2013) Histone acetylation-mediated regulation of the hippo pathway. PLoS One 8:e62478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293:L525–L534

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Xu MX, Jiang XL, Mei XY, Liu XG (2018) Histone deacetylase inhibitor SAHA-induced epithelial-mesenchymal transition by upregulating Slug in lung cancer cells. Anticancer Drugs 29:80–88

    Article  CAS  PubMed  Google Scholar 

  43. Papoutsoglou P, Louis C, Coulouarn C (2019) Transforming growth factor-beta (TGFβ) signaling pathway in cholangiocarcinoma. Cells 8:960

    Article  CAS  PubMed Central  Google Scholar 

  44. İnce AT, Yıldız K, Gangarapu V, Kayar Y, Baysal B, Karatepe O, Sarbay Kemik A, Şentürk H (2015) Serum and biliary MMP-9 and TIMP-1 concentrations in the diagnosis of cholangiocarcinoma. Int J Clin Exp Med 8:2734–2740

    PubMed  PubMed Central  Google Scholar 

  45. Bourboulia D, Han HY, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG (2013) TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget 4:166–176

    Article  PubMed  Google Scholar 

  46. Scheau C, Badarau IA, Costache R, Caruntu C, Mihai GL, Didilescu AC, Constantin C, Neagu M (2019) The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst) 2019:9423907

    Google Scholar 

  47. Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R, Hamilton JP, Abraham J (2009) MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49:1595–1601

    Article  CAS  PubMed  Google Scholar 

  48. Shen Z, Liao X, Shao Z, Feng M, Yuan J, Wang S, Gan S, Ha Y, He Z, Jie W (2019) Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability. BMC Cancer 19:262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept – GB; Design – GB, MB, MÖ; Supervision – GB; Resource – GB; Materials – GB, MÖ, HA, FG, ÇU, BND; Data Collection and/or Processing – GB, MÖ, HA; Analysis and/or Interpretation – GB, HA, MÖ, FG, ÇU, BND; Literature Search – GB, MB, MÖ; Writing – GB, MÖ; Critical Reviews – GB, MB.

Corresponding author

Correspondence to Merve Özel.

Ethics declarations

Conflict of interest

No conflict of interest was declared by the authors. The authors declared that this study had received no financial support.

Ethical approval

Ethics committee approval is not needed since it is a cell culture study.

Informed consent

No informed consent is needed since it is a cell culture study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özel, M., Başkol, G., Başkol, M. et al. SAHA induce hippo pathway in CCA cells without increasing cell proliferation. Mol Biol Rep 49, 3649–3656 (2022). https://doi.org/10.1007/s11033-022-07204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07204-8

Keywords

Navigation