Skip to main content

Advertisement

Log in

Apoptosis induction in human lung and colon cancer cells via impeding VEGF signaling pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

There is ample evidence to suggest that vascular endothelial growth factor (VEGF) is a potent mitogen factor in vasculogenesis and angiogenesis and that blockade of VEGF-mediated signals can also prevent tumor growth via enforcing cell apoptosis. In the current study, we assessed the suppressing effect of VGB4, a VEGF antagonist peptide with the binding ability to both VEGF receptor1 and VEGF receptor2, on VEGF-induced proliferation and migration of the human lung adenocarcinoma cell line A549 and the human colon adenocarcinoma cell line HT29 using MTT assay, colony formation assay, and Scratch-wound assay. To evaluate the apoptotic inductive effect of VGB4 on A549 and HT29 cells, apoptosis analysis was carried out by flow cytometry and TUNEL assay. Likewise, p53 and PTEN expression level was examined by immunofluorescence microscopy. In addition, the level of proteins involved in VEGF signaling pathways related to apoptosis was investigated using western blot analysis. Our results indicated that VGB4 markedly inhibited VEGF-induced proliferation and migration, and induced apoptosis of A549 and HT29 cells dose dependently. Encouragingly, significant downregulation of B-cell lymphoma 2 (Bcl2), X-linked inhibitor of apoptosis, Procaspase9, and procaspase3, as well as upregulation of PTEN and P53 tumor suppressors, BCL2 associated X, Cytochrome c, cleaved caspase9, and cleaved caspase3 in VGB4-treated A549 and HT29 cells, further confirmed the profound inductive influence of VGB4 on apoptotic pathways. These findings along with the results from our previous studies show that VGB4 may be considerable for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. Gerl R, Vaux DL (2005) Apoptosis in the development and treatment of cancer. Carcinogenesis 26(2):263–270. https://doi.org/10.1093/carcin/bgh283

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17(9):2941–2941. https://doi.org/10.1200/JCO.1999.17.9.2941

    Article  CAS  PubMed  Google Scholar 

  4. Sharma A, Boise LH, Shanmugam M (2019) Cancer metabolism and the evasion of apoptotic cell death. Cancers 11(8):1144. https://doi.org/10.3390/cancers11081144

    Article  CAS  PubMed Central  Google Scholar 

  5. Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23(12):620–633. https://doi.org/10.1016/j.tcb.2013.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193. https://doi.org/10.1038/s41580-018-0089-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee C, Tien H, Hu C, Chou W, Lin L (2007) Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia. Br J Cancer 97(7):877–882. https://doi.org/10.1038/sj.bjc.6603966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW, Siemann DW, Cogle CR (2010) Leukemia regression by vascular disruption and antiangiogenic therapy. Blood 116(9):1539–1547. https://doi.org/10.1182/blood-2009-06-230474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pidgeon GP, Barr MP, Harmey JH, Foley DA, Bouchier-Hayes DJ (2001) Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer 85(2):273–278. https://doi.org/10.1054/bjoc.2001.1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerber H-P, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316. https://doi.org/10.1074/jbc.273.21.13313

    Article  CAS  PubMed  Google Scholar 

  11. Gerber H-P, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343. https://doi.org/10.1074/jbc.273.46.30336

    Article  CAS  PubMed  Google Scholar 

  12. Behelgardi MF, Zahri S, Mashayekhi F, Mansouri K, Asghari SM (2018) A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-36394-0

    Article  CAS  Google Scholar 

  13. Behelgardi MF, Zahri S, Shahvir ZG, Mashayekhi F, Mirzanejad L, Asghari SM (2020) Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep 47(3):2061–2071. https://doi.org/10.1007/s11033-020-05306-9

    Article  CAS  Google Scholar 

  14. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. https://doi.org/10.1038/nrc2403

    Article  CAS  PubMed  Google Scholar 

  15. Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 47(6):4587–4629. https://doi.org/10.1007/s11033-020-05435-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52. https://doi.org/10.1016/S0002-9440(10)63273-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Investig 116(10):2610–2621. https://doi.org/10.1172/JCI24612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, Zeinali S, Molavi O (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785. https://doi.org/10.1016/j.biopha.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  19. Assareh E, Mehrnejad F, Mansouri K, Esmaeili Rastaghi AR, Naderi-Manesh H, Asghari SM (2019) A cyclic peptide reproducing the α1 helix of VEGF-B binds to VEGFR-1 and VEGFR-2 and inhibits angiogenesis and tumor growth. Biochem J 476(4):645–663. https://doi.org/10.1042/BCJ20180823

    Article  CAS  PubMed  Google Scholar 

  20. Sadremomtaz A, Kobarfard F, Mansouri K, Mirzanejad L, Asghari SM (2018) Suppression of migratory and metastatic pathways via blocking VEGFR1 and VEGFR2. J Recept Signal Transduct 38(5–6):432–441. https://doi.org/10.1080/10799893.2019.1567785

    Article  CAS  Google Scholar 

  21. Gille J, Heidenreich R, Pinter A, Schmitz J, Boehme B, Hicklin DJ, Henschler R, Breier G (2007) Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int J Cancer 120(9):1899–1908. https://doi.org/10.1002/ijc.22531

    Article  CAS  PubMed  Google Scholar 

  22. Sadremomtaz A, Mansouri K, Alemzadeh G, Safa M, Rastaghi AE, Asghari SM (2018) Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway. Biochim Biophys Acta 1862(12):2688–2700. https://doi.org/10.1016/j.bbagen.2018.08.013

    Article  CAS  Google Scholar 

  23. Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu Y, Hooper A, Hicklin DJ (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24(16):2647–2653. https://doi.org/10.1038/sj.onc.1208246

    Article  CAS  PubMed  Google Scholar 

  24. Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C, Brambilla E (1999) Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival. J Pathol 188(4):369–377. https://doi.org/10.1002/(SICI)1096-9896(199908)188:4%3c369::AID-PATH381%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  25. Holzer TR, Fulford AD, Nedderman DM, Umberger TS, Hozak RR, Joshi A, Melemed SA, Benjamin LE, Plowman GD, Schade AE (2013) Tumor cell expression of vascular endothelial growth factor receptor 2 is an adverse prognostic factor in patients with squamous cell carcinoma of the lung. PLoS ONE 8(11):e80292. https://doi.org/10.1371/journal.pone.0080292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882. https://doi.org/10.1038/nrc3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seto T, Higashiyama M, Funai H, Imamura F, Uematsu K, Seki N, Eguchi K, Yamanaka T, Ichinose Y (2006) Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 53(1):91–96. https://doi.org/10.1016/j.lungcan.2006.02.009

    Article  PubMed  Google Scholar 

  28. Duff SE, Jeziorska M, Rosa DD, Kumar S, Haboubi N, Sherlock D, O’Dwyer ST, Jayson GC (2006) Vascular endothelial growth factors and receptors in colorectal cancer: implications for anti-angiogenic therapy. Eur J Cancer 42(1):112–117. https://doi.org/10.1016/j.ejca.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  29. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402. https://doi.org/10.1016/j.ccr.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  30. Will M, Qin ACR, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, De Stanchina E (2014) Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS–ERK signaling. Cancer Discov 4(3):334–347. https://doi.org/10.1158/2159-8290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang F, Lee J, Navolanic P, Steelman L, Shelton J, Blalock W, Franklin R, McCubrey J (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17(3):590–603. https://doi.org/10.1038/sj.leu.2402824

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11(9):1–12. https://doi.org/10.1038/s41419-020-02998-6

    Article  CAS  Google Scholar 

  33. Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK, Ciorba MA (2019) IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Can Res 79(6):1138–1150. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  34. Li L, Wang F, Zhang J, Wang K, De X, Li L, Zhang Y (2021) Typical phthalic acid esters induce apoptosis by regulating the PI3K/Akt/Bcl-2 signaling pathway in rat insulinoma cells. Ecotoxicol Environ Saf 208:111461. https://doi.org/10.1016/j.ecoenv.2020.111461

    Article  CAS  PubMed  Google Scholar 

  35. Fan Y, Yang F, Cao X, Chen C, Zhang X, Zhang X, Lin W, Wang X, Liang C (2016) Gab1 regulates SDF-1-induced progression via inhibition of apoptosis pathway induced by PI3K/AKT/Bcl-2/BAX pathway in human chondrosarcoma. Tumor Biol 37(1):1141–1149. https://doi.org/10.1007/s13277-015-3815-2

    Article  CAS  Google Scholar 

  36. Chaudhary AK, Yadav N, Bhat TA, O’Malley J, Kumar S, Chandra D (2016) A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 21(1):38–47. https://doi.org/10.1016/j.drudis.2015.07.014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and the analyses were performed by MFB, ZGS and SMA. The manuscript was written by MFB and all authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Maryam Farzaneh Behelgardi or S. Mohsen Asghari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study includes only laboratory studies on stable established cell lines. No ethical or institutional approval is required.

Research involving human participants

No humans were used in this study.

Consent to publish

Authors approve for submitting the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 365 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh Behelgardi, M., Gholami Shahvir, Z. & Asghari, S.M. Apoptosis induction in human lung and colon cancer cells via impeding VEGF signaling pathways. Mol Biol Rep 49, 3637–3647 (2022). https://doi.org/10.1007/s11033-022-07203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07203-9

Keywords

Navigation