Skip to main content

Advertisement

Log in

Advances in the regulation of plant salt-stress tolerance by miRNA

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salt stress significantly affects the growth, development, yield, and quality of plants. MicroRNAs (miRNAs) are involved in various stress responses via target gene regulation. Their role in regulating salt stress has also received significant attention from researchers. Various transcription factor families are the common target genes of plant miRNAs. Thus, regulating the expression of miRNAs is a novel method for developing salt-tolerant crops. This review summarizes plant miRNAs that mediate salt tolerance, specifically miRNAs that have been utilized in genetic engineering to modify plant salinity tolerance. The molecular mechanism by which miRNAs mediate salt stress tolerance merits elucidation, and this knowledge will promote the development of miRNA-mediated salt-tolerant crops and provide new strategies against increasingly severe soil salinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

References

  1. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khare T, Kumar V, Kishor PB (2015) Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252(4):1149–1165. https://doi.org/10.1007/s00709-014-0749-2

    Article  CAS  PubMed  Google Scholar 

  3. Behera LM, Hembram P (2021) Advances on plant salinity stress responses in the post-genomic era: a review. J Crop Sci Biotechnol 24(2):117–126. https://doi.org/10.1007/s12892-020-00072-3

    Article  CAS  Google Scholar 

  4. Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203. https://doi.org/10.1016/j.tplants.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  5. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399. https://doi.org/10.1105/tpc.113.113159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761. https://doi.org/10.1093/jxb/erv013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar V, Khare T, Shriram V, Wani SH (2018) Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Rep 37(1):61–75. https://doi.org/10.1007/s00299-017-2210-4

    Article  CAS  PubMed  Google Scholar 

  9. Gao ZH, Nie JT, Wang HS (2021) MicroRNA biogenesis in plant. Plant Growth Regul 93(1):1–12. https://doi.org/10.1007/s10725-020-00654-9

    Article  CAS  Google Scholar 

  10. Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y (2020) Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol. https://doi.org/10.1038/s41556-020-00606-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song XW, Li Y, Cao XF, Qi YJ (2019) MicroRNAs and their regulatory roles in plant–environment interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334

    Article  CAS  PubMed  Google Scholar 

  12. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475. https://doi.org/10.1016/j.molcel.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Bologna NG, Schapire AL, Palatnik JF (2013) Processing of plant microRNA precursors. Brief Funct Genomics 12(1):37–45. https://doi.org/10.1093/bfgp/els050

    Article  CAS  PubMed  Google Scholar 

  14. Liu WW, Meng J, Cui J, Luan YS (2017) Characterization and function of microRNA(*)s in plants. Front Plant Sci 8:2200. https://doi.org/10.3389/fpls.2017.02200

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mengistu AA, Tenkegna TA (2021) The role of miRNA in plant–virus interaction: a review. Mol Biol Rep 48(3):2853–2861. https://doi.org/10.1007/s11033-021-06290-4

    Article  CAS  PubMed  Google Scholar 

  16. Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O (2018) Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell 69(4):709-719 e705. https://doi.org/10.1016/j.molcel.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Lotfi A, Pervaiz T, Jiu ST, Faghihi F, Jahanbakhshian Z, Khorzoghi EG, Fang JG, Seyedi SM (2017) Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regul 82(3):377–390. https://doi.org/10.1007/s10725-017-0277-0

    Article  CAS  Google Scholar 

  18. Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA (2019) Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing. Genes (Basel). https://doi.org/10.3390/genes10040303

    Article  Google Scholar 

  19. Xie R, Zhang J, Ma Y, Pan X, Dong C, Pang S, He S, Deng L, Yi S, Zheng Y, Lv Q (2017) Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 7:42094. https://doi.org/10.1038/srep42094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin ZJ, Han XL, Li Y, Wang JJ, Wang DL, Wang S, Fu XQ, Ye WW (2017) Comparative analysis of cotton small RNAs and their target genes in response to salt stress. Genes. https://doi.org/10.3390/genes8120369

    Article  PubMed  PubMed Central  Google Scholar 

  21. Makkar H, Arora S, Khuman AK, Chaudhary B (2021) Target-mimicry-based miR167 diminution confers salt-stress tolerance during in vitro organogenesis of tobacco (Nicotiana tabacum L.). J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10376-5

    Article  Google Scholar 

  22. Zhang X, Shen J, Xu Q, Dong J, Song L, Wang W, Shen F (2021) Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. Plant Cell Environ 44(10):3302–3321. https://doi.org/10.1111/pce.14133

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17(1):233–251. https://doi.org/10.1111/pbi.12960

    Article  CAS  PubMed  Google Scholar 

  24. He F, Xu C, Fu X, Shen Y, Guo L, Leng M, Luo K (2018) The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiol 177(2):775–791. https://doi.org/10.1104/pp.17.01559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, Kim C, Kim DH, Lee SY, Kim MC, Yun DJ (2016) A role for Arabidopsis miR399f in salt, drought, and ABA signaling. Mol Cells 39(2):111–118. https://doi.org/10.14348/molcells.2016.2188

    Article  CAS  PubMed  Google Scholar 

  26. Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117. https://doi.org/10.1111/tpj.12712

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Wang T, Zhang Y, Li Y (2017) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 68(16):4727–4729. https://doi.org/10.1093/jxb/erw404

    Article  CAS  PubMed  Google Scholar 

  28. Long R, Li M, Li X, Gao Y, Zhang T, Sun Y, Kang J, Wang T, Cong L, Yang Q (2017) A novel miRNA sponge form efficiently inhibits the activity of miR393 and enhances the salt tolerance and ABA insensitivity in Arabidopsis thaliana. Plant Mol Biol Report 35(4):409–415. https://doi.org/10.1007/s11105-017-1033-3

    Article  CAS  Google Scholar 

  29. Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13:210. https://doi.org/10.1186/1471-2229-13-210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu YR, Li DY, Yan JP, Wang KX, Luo H, Zhang WJ (2019) MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass. Plant Biotechnol J 17(12):2370–2383. https://doi.org/10.1111/pbi.13154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60(9):796–804. https://doi.org/10.1111/jipb.12689

    Article  CAS  PubMed  Google Scholar 

  32. Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res Int 24(11):10068–10082. https://doi.org/10.1007/s11356-017-8593-5

    Article  CAS  PubMed  Google Scholar 

  33. Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F (2019) MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 16(3):362–375. https://doi.org/10.1080/15476286.2019.1574163

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE. https://doi.org/10.1371/journal.pone.0230958

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng XL, He Q, Tang S, Wang HR, Zhang XX, Lv MJ, Liu HF, Gao Q, Zhou Y, Wang Q, Man XY, Liu J, Huang RF, Wang H, Chen T, Liu J (2021) The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytol 230(3):1017–1033. https://doi.org/10.1111/nph.17211

    Article  CAS  PubMed  Google Scholar 

  36. Arshad M, Gruber MY, Wall K, Hannoufa A (2017) An Insight into microRNA156 role in salinity stress responses of alfalfa. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kang T, Yu CY, Liu Y, Song WM, Bao Y, Guo XT, Li B, Zhang HX (2020) Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01664

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma Y, Xue H, Zhang F, Jiang Q, Yang S, Yue P, Wang F, Zhang Y, Li L, He P, Zhang Z (2020) The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnol J. https://doi.org/10.1111/pbi.13464

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep-Uk 9(1):2832. https://doi.org/10.1038/s41598-019-39397-7

    Article  CAS  Google Scholar 

  40. Huang J, Li Z, Zhao D (2016) Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep-Uk 6(1):29938. https://doi.org/10.1038/srep29938

    Article  CAS  Google Scholar 

  41. Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S (2015) microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84(1):140–153. https://doi.org/10.1111/tpj.12965

    Article  CAS  PubMed  Google Scholar 

  42. Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK (2018) MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot 69(8):2023–2036. https://doi.org/10.1093/jxb/ery025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Damodharan S, Zhao D, Arazi T (2016) A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J 86(6):458–471. https://doi.org/10.1111/tpj.13127

    Article  CAS  PubMed  Google Scholar 

  44. Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan GA, Bazin J, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Brière C (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40(12):1208–1220. https://doi.org/10.1071/FP13123

    Article  CAS  PubMed  Google Scholar 

  45. Lin J-S, Kuo C-C, Yang I-C, Tsai W-A, Shen Y-H, Lin C-C, Liang Y-C, Li Y-C, Kuo Y-W, King Y-C, Lai H-M, Jeng S-T (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00068

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu X, Leng X, Sun X, Mu Q, Wang B, Li X, Wang C, Fang J (2015) Discovery of conservation and diversification of miR171 genes by phylogenetic analysis based on global genomes. Plant Genome. https://doi.org/10.3835/plantgenome2014.10.0076

    Article  PubMed  Google Scholar 

  47. Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3(5):794–806. https://doi.org/10.1093/mp/ssq042

    Article  CAS  PubMed  Google Scholar 

  48. Yang W, Fan T, Hu XY, Cheng TH, Zhang MY (2017) Overexpressing osa-miR171c decreases salt stress tolerance in rice. J Plant Biol 60(5):485–492. https://doi.org/10.1007/s12374-017-0093-0

    Article  CAS  Google Scholar 

  49. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741. https://doi.org/10.1105/tpc.016238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62(2):487–495. https://doi.org/10.1093/jxb/erq295

    Article  CAS  PubMed  Google Scholar 

  51. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759. https://doi.org/10.1016/j.cell.2009.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell 37(3):254–266. https://doi.org/10.1016/j.devcel.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  53. Yu S, Lian H, Wang JW (2015) Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol 27:1–7. https://doi.org/10.1016/j.pbi.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  54. Jose Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, Chapman EJ, Ditta GS, Estelle M, Yanofsky MF (2015) microRNA regulation of fruit growth. Nat Plants 1(4):15036. https://doi.org/10.1038/nplants.2015.36

    Article  CAS  PubMed  Google Scholar 

  55. Cho HJ, Kim JJ, Lee JH, Kim W, Jung JH, Park CM, Ahn JH (2012) SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Lett 586(16):2332–2337. https://doi.org/10.1016/j.febslet.2012.05.035

    Article  CAS  PubMed  Google Scholar 

  56. Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9(9):1337–1340. https://doi.org/10.1016/j.molp.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  57. Sahito ZA, Wang L, Sun Z, Yan Q, Zhang X, Jiang Q, Ullah I, Tong Y, Li X (2017) The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biol 17(1):229. https://doi.org/10.1186/s12870-017-1161-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263. https://doi.org/10.1038/nature01958

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Li C, Ding G, Jin Y (2011) Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11(1):122. https://doi.org/10.1186/1471-2148-11-122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391. https://doi.org/10.1104/pp.112.208702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577. https://doi.org/10.1016/j.cell.2006.09.032

    Article  CAS  PubMed  Google Scholar 

  62. Wen FL, Yue Y, He TF, Gao XM, Zhou ZS, Long XH (2020) Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 738:144460. https://doi.org/10.1016/j.gene.2020.144460

    Article  CAS  PubMed  Google Scholar 

  63. Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196(1):149–161. https://doi.org/10.1111/j.1469-8137.2012.04248.x

    Article  CAS  PubMed  Google Scholar 

  64. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242. https://doi.org/10.1007/s11033-010-0100-8

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Wang K, Li D, Yan J, Zhang W (2017) Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of osa-miR393a. Plant Cell Physiol 58(12):2226–2240. https://doi.org/10.1093/pcp/pcx157

    Article  CAS  PubMed  Google Scholar 

  66. Feng X-M, You C-X, Qiao Y, Mao K, Hao Y-J (2010) Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco. Acta Physiol Plant 32(5):997–1003. https://doi.org/10.1007/s11738-010-0490-1

    Article  CAS  Google Scholar 

  67. Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE 9(9):e107678. https://doi.org/10.1371/journal.pone.0107678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7(1):e30039. https://doi.org/10.1371/journal.pone.0030039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62(6):1046–1057. https://doi.org/10.1111/j.1365-313X.2010.04216.x

    Article  CAS  PubMed  Google Scholar 

  70. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57(2):313–321. https://doi.org/10.1111/j.1365-313X.2008.03690.x

    Article  CAS  PubMed  Google Scholar 

  71. Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H (2010) Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232(6):1447–1454. https://doi.org/10.1007/s00425-010-1267-x

    Article  CAS  PubMed  Google Scholar 

  72. Liebsch D, Palatnik JF (2020) MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53:31–42. https://doi.org/10.1016/j.pbi.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  73. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799. https://doi.org/10.1016/j.molcel.2004.05.027

    Article  CAS  PubMed  Google Scholar 

  74. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231(5):991–1001. https://doi.org/10.1007/s00425-010-1104-2

    Article  CAS  PubMed  Google Scholar 

  75. Yuan S, Zhao J, Li Z, Hu Q, Yuan N, Zhou M, Xia X, Noorai R, Saski C, Li S, Luo H (2019) MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Hortic Res 6:48. https://doi.org/10.1038/s41438-019-0130-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang S, Zhou J, Gao L, Tang Y (2021) Plant miR397 and its functions. Funct Plant Biol 48(4):361–370. https://doi.org/10.1071/FP20342

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen DQ, Brown CW, Pegler JL, Eamens AL, Grof CPL (2020) Molecular manipulation of microRNA397 abundance influences the development and salt stress response of Arabidopsis thaliana. Int J Mol Sci 21(21):7879

    Article  CAS  Google Scholar 

  78. Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143(1):1–9

    Article  CAS  Google Scholar 

  79. Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62(3):454–462. https://doi.org/10.1111/j.1365-313X.2010.04162.x

    Article  CAS  PubMed  Google Scholar 

  80. He Y, Zhou JX, Hu YF, Fang CY, Yu YJ, Yang J, Zhu BA, Ruan YL, Zhu ZJ (2021) Overexpression of sly-miR398b increased salt sensitivity likely via regulating antioxidant system and photosynthesis in tomato. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104273

    Article  Google Scholar 

  81. Wang R, Fang YN, Wu XM, Qing M, Li CC, Xie KD, Deng XX, Guo WW (2020) The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus. Plant Physiol 183(4):1681–1695. https://doi.org/10.1104/pp.20.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019. https://doi.org/10.1105/tpc.104.022830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51(6):1079–1083. https://doi.org/10.1093/pcp/pcq072

    Article  CAS  PubMed  Google Scholar 

  84. Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13(7):343–349. https://doi.org/10.1016/j.tplants.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  85. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21(1):347–361. https://doi.org/10.1105/tpc.108.060137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L (2014) MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26(12):4933–4953. https://doi.org/10.1105/tpc.114.127340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170(3):1578–1594. https://doi.org/10.1104/pp.15.01216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bai QQ, Wang XY, Chen X, Shi GQ, Liu ZP, Guo CJ, Xiao K (2018) Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00499

    Article  PubMed  PubMed Central  Google Scholar 

  89. Guo X, Niu J, Cao X (2018) Heterologous expression of Salvia miltiorrhiza microRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int J Mol Sci. https://doi.org/10.3390/ijms19123985

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84(1):169–187. https://doi.org/10.1111/tpj.12999

    Article  CAS  PubMed  Google Scholar 

  91. Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232(2):417–434. https://doi.org/10.1007/s00425-010-1182-1

    Article  CAS  PubMed  Google Scholar 

  92. Xie F, Sun G, Stiller JW, Zhang B (2011) Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS ONE 6(11):e26980. https://doi.org/10.1371/journal.pone.0026980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45(10–11):805–811. https://doi.org/10.1016/j.plaphy.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  94. Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139(1):296–305. https://doi.org/10.1104/pp.105.063420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y (2019) Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant 12(8):1114–1122. https://doi.org/10.1016/j.molp.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  96. Chen C, Liu Y, Xia R (2019) Jack of many trades: the multifaceted role of miR528 in monocots. Mol Plant 12(8):1044–1046. https://doi.org/10.1016/j.molp.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  97. Yuan SG, Li ZG, Li DY, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576. https://doi.org/10.1104/pp.15.00899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yue E, Cao H, Liu B (2020) OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants 9(10):1337

    Article  CAS  Google Scholar 

  99. Peng T, Sun H, Qiao M, Zhao Y, Du Y, Zhang J, Li J, Tang G, Zhao Q (2014) Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol 14(1):196. https://doi.org/10.1186/s12870-014-0196-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7(1):174–187. https://doi.org/10.1039/c4mt00264d

    Article  CAS  PubMed  Google Scholar 

  101. Zhang FT, Luo XD, Zhou Y, Xie JK (2016) Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett 38(4):711–721. https://doi.org/10.1007/s10529-015-2012-0

    Article  CAS  PubMed  Google Scholar 

  102. Ai B, Chen Y, Zhao MM, Ding GM, Xie JK, Zhang FT (2020) Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.). Genet Resour Crop Ev 68:87–92. https://doi.org/10.1007/s10722-020-01045-9

    Article  CAS  Google Scholar 

  103. Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie FL, Zhang BH (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep-Uk. https://doi.org/10.1038/srep19736

    Article  Google Scholar 

  104. Li J, Cui J, Dai C, Liu T, Cheng D, Luo C (2020) Whole-transcriptome RNA sequencing reveals the global molecular responses and CeRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to salt stress in sugar beet (Beta vulgaris). Int J Mol Sci. https://doi.org/10.3390/ijms22010289

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen Q-j, Deng B-h, Gao J, Zhao Z-y, Chen Z-l, Song S-r, Wang L, Zhao L-p, Xu W-p, Zhang C-x, Ma C, Wang S-p (2020) A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation. Plant Physiol 183(2):656–670. https://doi.org/10.1104/pp.20.00197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 32102342), Natural Science Foundation of Shandong Province (Grant No. ZR2020QC148), Ningxia Key Agricultural Technology Research Project, China Agriculture Research System of MOF and MARA, Shandong Provincial Key Research and Development (Grant No. 2018CXGC0306), National Natural Sciences Foundation of China (Grant No. 31972383), and Fruit Industrial Technology System of Shandong Province (Grant No. SDAIT-06-03).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in writing part of the original draft.

Corresponding author

Correspondence to Yuanpeng Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

All authors consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Ma, C., Zheng, C. et al. Advances in the regulation of plant salt-stress tolerance by miRNA. Mol Biol Rep 49, 5041–5055 (2022). https://doi.org/10.1007/s11033-022-07179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07179-6

Keywords