Abstract
Salt stress significantly affects the growth, development, yield, and quality of plants. MicroRNAs (miRNAs) are involved in various stress responses via target gene regulation. Their role in regulating salt stress has also received significant attention from researchers. Various transcription factor families are the common target genes of plant miRNAs. Thus, regulating the expression of miRNAs is a novel method for developing salt-tolerant crops. This review summarizes plant miRNAs that mediate salt tolerance, specifically miRNAs that have been utilized in genetic engineering to modify plant salinity tolerance. The molecular mechanism by which miRNAs mediate salt stress tolerance merits elucidation, and this knowledge will promote the development of miRNA-mediated salt-tolerant crops and provide new strategies against increasingly severe soil salinization.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable.
References
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01787
Khare T, Kumar V, Kishor PB (2015) Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252(4):1149–1165. https://doi.org/10.1007/s00709-014-0749-2
Behera LM, Hembram P (2021) Advances on plant salinity stress responses in the post-genomic era: a review. J Crop Sci Biotechnol 24(2):117–126. https://doi.org/10.1007/s12892-020-00072-3
Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203. https://doi.org/10.1016/j.tplants.2012.01.010
Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399. https://doi.org/10.1105/tpc.113.113159
Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761. https://doi.org/10.1093/jxb/erv013
Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817
Kumar V, Khare T, Shriram V, Wani SH (2018) Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Rep 37(1):61–75. https://doi.org/10.1007/s00299-017-2210-4
Gao ZH, Nie JT, Wang HS (2021) MicroRNA biogenesis in plant. Plant Growth Regul 93(1):1–12. https://doi.org/10.1007/s10725-020-00654-9
Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y (2020) Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol. https://doi.org/10.1038/s41556-020-00606-5
Song XW, Li Y, Cao XF, Qi YJ (2019) MicroRNAs and their regulatory roles in plant–environment interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475. https://doi.org/10.1016/j.molcel.2010.03.008
Bologna NG, Schapire AL, Palatnik JF (2013) Processing of plant microRNA precursors. Brief Funct Genomics 12(1):37–45. https://doi.org/10.1093/bfgp/els050
Liu WW, Meng J, Cui J, Luan YS (2017) Characterization and function of microRNA(*)s in plants. Front Plant Sci 8:2200. https://doi.org/10.3389/fpls.2017.02200
Mengistu AA, Tenkegna TA (2021) The role of miRNA in plant–virus interaction: a review. Mol Biol Rep 48(3):2853–2861. https://doi.org/10.1007/s11033-021-06290-4
Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O (2018) Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell 69(4):709-719 e705. https://doi.org/10.1016/j.molcel.2018.01.007
Lotfi A, Pervaiz T, Jiu ST, Faghihi F, Jahanbakhshian Z, Khorzoghi EG, Fang JG, Seyedi SM (2017) Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regul 82(3):377–390. https://doi.org/10.1007/s10725-017-0277-0
Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA (2019) Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing. Genes (Basel). https://doi.org/10.3390/genes10040303
Xie R, Zhang J, Ma Y, Pan X, Dong C, Pang S, He S, Deng L, Yi S, Zheng Y, Lv Q (2017) Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 7:42094. https://doi.org/10.1038/srep42094
Yin ZJ, Han XL, Li Y, Wang JJ, Wang DL, Wang S, Fu XQ, Ye WW (2017) Comparative analysis of cotton small RNAs and their target genes in response to salt stress. Genes. https://doi.org/10.3390/genes8120369
Makkar H, Arora S, Khuman AK, Chaudhary B (2021) Target-mimicry-based miR167 diminution confers salt-stress tolerance during in vitro organogenesis of tobacco (Nicotiana tabacum L.). J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10376-5
Zhang X, Shen J, Xu Q, Dong J, Song L, Wang W, Shen F (2021) Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. Plant Cell Environ 44(10):3302–3321. https://doi.org/10.1111/pce.14133
Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17(1):233–251. https://doi.org/10.1111/pbi.12960
He F, Xu C, Fu X, Shen Y, Guo L, Leng M, Luo K (2018) The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiol 177(2):775–791. https://doi.org/10.1104/pp.17.01559
Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, Kim C, Kim DH, Lee SY, Kim MC, Yun DJ (2016) A role for Arabidopsis miR399f in salt, drought, and ABA signaling. Mol Cells 39(2):111–118. https://doi.org/10.14348/molcells.2016.2188
Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117. https://doi.org/10.1111/tpj.12712
Li W, Wang T, Zhang Y, Li Y (2017) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 68(16):4727–4729. https://doi.org/10.1093/jxb/erw404
Long R, Li M, Li X, Gao Y, Zhang T, Sun Y, Kang J, Wang T, Cong L, Yang Q (2017) A novel miRNA sponge form efficiently inhibits the activity of miR393 and enhances the salt tolerance and ABA insensitivity in Arabidopsis thaliana. Plant Mol Biol Report 35(4):409–415. https://doi.org/10.1007/s11105-017-1033-3
Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13:210. https://doi.org/10.1186/1471-2229-13-210
Liu YR, Li DY, Yan JP, Wang KX, Luo H, Zhang WJ (2019) MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass. Plant Biotechnol J 17(12):2370–2383. https://doi.org/10.1111/pbi.13154
Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60(9):796–804. https://doi.org/10.1111/jipb.12689
Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res Int 24(11):10068–10082. https://doi.org/10.1007/s11356-017-8593-5
Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F (2019) MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 16(3):362–375. https://doi.org/10.1080/15476286.2019.1574163
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE. https://doi.org/10.1371/journal.pone.0230958
Cheng XL, He Q, Tang S, Wang HR, Zhang XX, Lv MJ, Liu HF, Gao Q, Zhou Y, Wang Q, Man XY, Liu J, Huang RF, Wang H, Chen T, Liu J (2021) The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytol 230(3):1017–1033. https://doi.org/10.1111/nph.17211
Arshad M, Gruber MY, Wall K, Hannoufa A (2017) An Insight into microRNA156 role in salinity stress responses of alfalfa. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00356
Kang T, Yu CY, Liu Y, Song WM, Bao Y, Guo XT, Li B, Zhang HX (2020) Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01664
Ma Y, Xue H, Zhang F, Jiang Q, Yang S, Yue P, Wang F, Zhang Y, Li L, He P, Zhang Z (2020) The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnol J. https://doi.org/10.1111/pbi.13464
Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep-Uk 9(1):2832. https://doi.org/10.1038/s41598-019-39397-7
Huang J, Li Z, Zhao D (2016) Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep-Uk 6(1):29938. https://doi.org/10.1038/srep29938
Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S (2015) microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84(1):140–153. https://doi.org/10.1111/tpj.12965
Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK (2018) MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot 69(8):2023–2036. https://doi.org/10.1093/jxb/ery025
Damodharan S, Zhao D, Arazi T (2016) A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J 86(6):458–471. https://doi.org/10.1111/tpj.13127
Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan GA, Bazin J, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Brière C (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40(12):1208–1220. https://doi.org/10.1071/FP13123
Lin J-S, Kuo C-C, Yang I-C, Tsai W-A, Shen Y-H, Lin C-C, Liang Y-C, Li Y-C, Kuo Y-W, King Y-C, Lai H-M, Jeng S-T (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00068
Zhu X, Leng X, Sun X, Mu Q, Wang B, Li X, Wang C, Fang J (2015) Discovery of conservation and diversification of miR171 genes by phylogenetic analysis based on global genomes. Plant Genome. https://doi.org/10.3835/plantgenome2014.10.0076
Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3(5):794–806. https://doi.org/10.1093/mp/ssq042
Yang W, Fan T, Hu XY, Cheng TH, Zhang MY (2017) Overexpressing osa-miR171c decreases salt stress tolerance in rice. J Plant Biol 60(5):485–492. https://doi.org/10.1007/s12374-017-0093-0
Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741. https://doi.org/10.1105/tpc.016238
Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62(2):487–495. https://doi.org/10.1093/jxb/erq295
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759. https://doi.org/10.1016/j.cell.2009.06.031
Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell 37(3):254–266. https://doi.org/10.1016/j.devcel.2016.04.001
Yu S, Lian H, Wang JW (2015) Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol 27:1–7. https://doi.org/10.1016/j.pbi.2015.05.009
Jose Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, Chapman EJ, Ditta GS, Estelle M, Yanofsky MF (2015) microRNA regulation of fruit growth. Nat Plants 1(4):15036. https://doi.org/10.1038/nplants.2015.36
Cho HJ, Kim JJ, Lee JH, Kim W, Jung JH, Park CM, Ahn JH (2012) SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Lett 586(16):2332–2337. https://doi.org/10.1016/j.febslet.2012.05.035
Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9(9):1337–1340. https://doi.org/10.1016/j.molp.2016.05.010
Sahito ZA, Wang L, Sun Z, Yan Q, Zhang X, Jiang Q, Ullah I, Tong Y, Li X (2017) The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biol 17(1):229. https://doi.org/10.1186/s12870-017-1161-9
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263. https://doi.org/10.1038/nature01958
Li Y, Li C, Ding G, Jin Y (2011) Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11(1):122. https://doi.org/10.1186/1471-2148-11-122
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391. https://doi.org/10.1104/pp.112.208702
Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577. https://doi.org/10.1016/j.cell.2006.09.032
Wen FL, Yue Y, He TF, Gao XM, Zhou ZS, Long XH (2020) Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 738:144460. https://doi.org/10.1016/j.gene.2020.144460
Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196(1):149–161. https://doi.org/10.1111/j.1469-8137.2012.04248.x
Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242. https://doi.org/10.1007/s11033-010-0100-8
Liu Y, Wang K, Li D, Yan J, Zhang W (2017) Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of osa-miR393a. Plant Cell Physiol 58(12):2226–2240. https://doi.org/10.1093/pcp/pcx157
Feng X-M, You C-X, Qiao Y, Mao K, Hao Y-J (2010) Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco. Acta Physiol Plant 32(5):997–1003. https://doi.org/10.1007/s11738-010-0490-1
Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE 9(9):e107678. https://doi.org/10.1371/journal.pone.0107678
Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7(1):e30039. https://doi.org/10.1371/journal.pone.0030039
Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62(6):1046–1057. https://doi.org/10.1111/j.1365-313X.2010.04216.x
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57(2):313–321. https://doi.org/10.1111/j.1365-313X.2008.03690.x
Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H (2010) Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232(6):1447–1454. https://doi.org/10.1007/s00425-010-1267-x
Liebsch D, Palatnik JF (2020) MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53:31–42. https://doi.org/10.1016/j.pbi.2019.09.008
Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799. https://doi.org/10.1016/j.molcel.2004.05.027
Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231(5):991–1001. https://doi.org/10.1007/s00425-010-1104-2
Yuan S, Zhao J, Li Z, Hu Q, Yuan N, Zhou M, Xia X, Noorai R, Saski C, Li S, Luo H (2019) MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Hortic Res 6:48. https://doi.org/10.1038/s41438-019-0130-x
Huang S, Zhou J, Gao L, Tang Y (2021) Plant miR397 and its functions. Funct Plant Biol 48(4):361–370. https://doi.org/10.1071/FP20342
Nguyen DQ, Brown CW, Pegler JL, Eamens AL, Grof CPL (2020) Molecular manipulation of microRNA397 abundance influences the development and salt stress response of Arabidopsis thaliana. Int J Mol Sci 21(21):7879
Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143(1):1–9
Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62(3):454–462. https://doi.org/10.1111/j.1365-313X.2010.04162.x
He Y, Zhou JX, Hu YF, Fang CY, Yu YJ, Yang J, Zhu BA, Ruan YL, Zhu ZJ (2021) Overexpression of sly-miR398b increased salt sensitivity likely via regulating antioxidant system and photosynthesis in tomato. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104273
Wang R, Fang YN, Wu XM, Qing M, Li CC, Xie KD, Deng XX, Guo WW (2020) The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus. Plant Physiol 183(4):1681–1695. https://doi.org/10.1104/pp.20.00129
Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019. https://doi.org/10.1105/tpc.104.022830
Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51(6):1079–1083. https://doi.org/10.1093/pcp/pcq072
Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13(7):343–349. https://doi.org/10.1016/j.tplants.2008.03.009
Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21(1):347–361. https://doi.org/10.1105/tpc.108.060137
Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L (2014) MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26(12):4933–4953. https://doi.org/10.1105/tpc.114.127340
Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170(3):1578–1594. https://doi.org/10.1104/pp.15.01216
Bai QQ, Wang XY, Chen X, Shi GQ, Liu ZP, Guo CJ, Xiao K (2018) Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00499
Guo X, Niu J, Cao X (2018) Heterologous expression of Salvia miltiorrhiza microRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int J Mol Sci. https://doi.org/10.3390/ijms19123985
Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84(1):169–187. https://doi.org/10.1111/tpj.12999
Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232(2):417–434. https://doi.org/10.1007/s00425-010-1182-1
Xie F, Sun G, Stiller JW, Zhang B (2011) Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS ONE 6(11):e26980. https://doi.org/10.1371/journal.pone.0026980
Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45(10–11):805–811. https://doi.org/10.1016/j.plaphy.2007.07.015
Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139(1):296–305. https://doi.org/10.1104/pp.105.063420
Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y (2019) Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant 12(8):1114–1122. https://doi.org/10.1016/j.molp.2019.04.010
Chen C, Liu Y, Xia R (2019) Jack of many trades: the multifaceted role of miR528 in monocots. Mol Plant 12(8):1044–1046. https://doi.org/10.1016/j.molp.2019.06.007
Yuan SG, Li ZG, Li DY, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576. https://doi.org/10.1104/pp.15.00899
Yue E, Cao H, Liu B (2020) OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants 9(10):1337
Peng T, Sun H, Qiao M, Zhao Y, Du Y, Zhang J, Li J, Tang G, Zhao Q (2014) Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol 14(1):196. https://doi.org/10.1186/s12870-014-0196-4
Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7(1):174–187. https://doi.org/10.1039/c4mt00264d
Zhang FT, Luo XD, Zhou Y, Xie JK (2016) Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett 38(4):711–721. https://doi.org/10.1007/s10529-015-2012-0
Ai B, Chen Y, Zhao MM, Ding GM, Xie JK, Zhang FT (2020) Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.). Genet Resour Crop Ev 68:87–92. https://doi.org/10.1007/s10722-020-01045-9
Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie FL, Zhang BH (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep-Uk. https://doi.org/10.1038/srep19736
Li J, Cui J, Dai C, Liu T, Cheng D, Luo C (2020) Whole-transcriptome RNA sequencing reveals the global molecular responses and CeRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to salt stress in sugar beet (Beta vulgaris). Int J Mol Sci. https://doi.org/10.3390/ijms22010289
Chen Q-j, Deng B-h, Gao J, Zhao Z-y, Chen Z-l, Song S-r, Wang L, Zhao L-p, Xu W-p, Zhang C-x, Ma C, Wang S-p (2020) A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation. Plant Physiol 183(2):656–670. https://doi.org/10.1104/pp.20.00197
Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 32102342), Natural Science Foundation of Shandong Province (Grant No. ZR2020QC148), Ningxia Key Agricultural Technology Research Project, China Agriculture Research System of MOF and MARA, Shandong Provincial Key Research and Development (Grant No. 2018CXGC0306), National Natural Sciences Foundation of China (Grant No. 31972383), and Fruit Industrial Technology System of Shandong Province (Grant No. SDAIT-06-03).
Author information
Authors and Affiliations
Contributions
All authors contributed in writing part of the original draft.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Ethical approval
Not applicable.
Consent for publication
All authors consent to publish.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gao, Z., Ma, C., Zheng, C. et al. Advances in the regulation of plant salt-stress tolerance by miRNA. Mol Biol Rep 49, 5041–5055 (2022). https://doi.org/10.1007/s11033-022-07179-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-022-07179-6
