Skip to main content
Log in

Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD.

Methods and results

Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections.

Conclusion

Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request. (https://doi.org/10.6084/m9.figshare.14748543).

References

  1. Yakala GK, Wielinga PY, Suarez M, Bunschoten A, van Golde JM, Arola L et al (2013) Effects of chocolate supplementation on metabolic and cardiovascular parameters in ApoE3L mice fed a high-cholesterol atherogenic diet. Mol Nutr Food Res 57(11):2039–2048

    Article  CAS  PubMed  Google Scholar 

  2. Kume N (2010) Molecular mechanisms of coronary atherosclerotic plaque formation and rupture. Nihon Rinsho 68(4):637–641

    PubMed  Google Scholar 

  3. Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S et al (2019) New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci 20(1):187

    Article  CAS  PubMed Central  Google Scholar 

  4. Gliozzi M, Scicchitano M, Bosco F, Musolino V, Carresi C, Scarano F et al (2019) Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int J Mol Sci 20(13):3294

    Article  CAS  PubMed Central  Google Scholar 

  5. Gao F, Chen J, Zhu H (2018) A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. Sci China Life Sci 61(9):1024–1029

    Article  CAS  PubMed  Google Scholar 

  6. Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29(2):99–107

    CAS  Google Scholar 

  7. Day EA, Ford RJ, Steinberg GR (2017) AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab 28(8):545–560

    Article  CAS  PubMed  Google Scholar 

  8. Sweet DR, Fan L, Hsieh PN, Jain MK (2018) Krüppel-like factors in vascular inflammation: mechanistic insights and therapeutic potential. Front Cardiovasc Med 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novodvorsky P, Chico TJ (2014) The role of the transcription factor KLF2 in vascular development and disease. Prog Mol Biol Transl Sci 124:155–188

    Article  CAS  PubMed  Google Scholar 

  10. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA Jr, García-Cardeña G (2005) Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280(29):26714–26719

    Article  CAS  PubMed  Google Scholar 

  11. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199(10):1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Magee N, Zou A, Zhang Y (2016) Pathogenesis of nonalcoholic steatohepatitis: interactions between liver parenchymal and nonparenchymal cells. Biomed Res Int 2016:5170402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oni ET, Agatston AS, Blaha MJ, Fialkow J, Cury R, Sposito A et al (2013) A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care? Atherosclerosis 230(2):258–267

    Article  CAS  PubMed  Google Scholar 

  14. Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 363(14):1341–1350

    Article  CAS  PubMed  Google Scholar 

  15. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5):1836–1846

    Article  CAS  PubMed  Google Scholar 

  16. Motiño O, Agra N, Brea Contreras R, Domínguez-Moreno M, García-Monzón C, Vargas-Castrillón J et al (2016) Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice. Biochim Biophys Acta 1862(9):1710–1723

    Article  CAS  PubMed  Google Scholar 

  17. Cheng Q, Li N, Chen M, Zheng J, Qian Z, Wang X et al (2013) Cyclooxygenase-2 promotes hepatocellular apoptosis by interacting with TNF-α and IL-6 in the pathogenesis of nonalcoholic steatohepatitis in rats. Dig Dis Sci 58(10):2895–2902

    Article  CAS  PubMed  Google Scholar 

  18. Francés DE, Motiño O, Agrá N, González-Rodríguez Á, Fernández-Álvarez A, Cucarella C et al (2015) Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes 64(5):1522–1531

    Article  CAS  PubMed  Google Scholar 

  19. Zhang QQ, Lu LG (2015) Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol 3(1):78–84

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karkhaneh L, Yaghmaei P, Parivar K, Sadeghizadeh M, Ebrahim-Habibi A (2016) Effect of trans-chalcone on atheroma plaque formation, liver fibrosis and adiponectin gene expression in cholesterol-fed NMRI mice. Pharmacol Rep 68(4):720–727

    Article  CAS  PubMed  Google Scholar 

  21. Muñoz MC, Argentino DP, Dominici FP, Turyn D, Toblli JE (2006) Irbesartan restores the in-vivo insulin signaling pathway leading to Akt activation in obese Zucker rats. J Hypertens 24(8):1607–1617

    Article  CAS  PubMed  Google Scholar 

  22. Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ et al (2017) PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep 16(6):7879–7889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng W, Meng Z, Sun A, Yang Z (2017) Pioglitazone suppresses inflammation and fibrosis in nonalcoholic fatty liver disease by down-regulating PDGF and TIMP-2: evidence from in vitro study. Cancer Biomark 20(4):411–415

    Article  CAS  PubMed  Google Scholar 

  24. Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J et al (2021) Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol. 11:592654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Najafian M, Ebrahim-Habibi A, Hezareh N, Yaghmaei P, Parivar K, Larijani B (2011) Trans-chalcone: a novel small molecule inhibitor of mammalian alpha-amylase. Mol Biol Rep 38(3):1617–1620

    Article  CAS  PubMed  Google Scholar 

  26. Karimi-Sales E, Jeddi S, Ghaffari-Nasab A, Salimi M, Alipour MR (2018) Effect of trans-chalcone on hepatic IL-8 through the regulation of miR-451 in male rats. Endocr Regul 52(1):1–5

    Article  PubMed  Google Scholar 

  27. Karimi-Sales E, Jeddi S, Ebrahimi-Kalan A, Alipour MR (2018) trans-Chalcone prevents insulin resistance and hepatic inflammation and also promotes hepatic cholesterol efflux in high-fat diet-fed rats: modulation of miR-34a-, miR-451-, and miR-33a-related pathways. Food Funct 9(8):4292–4298

    Article  CAS  PubMed  Google Scholar 

  28. Karimi-Sales E, Jeddi S, Alipour MR (2020) trans-Chalcone inhibits transforming growth factor-β1 and connective tissue growth factor-dependent collagen expression in the heart of high-fat diet-fed rats. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2020.1764045

    Article  PubMed  Google Scholar 

  29. Karimi-Sales E, Ebrahimi-Kalan A, Alipour MR (2019) Preventive effect of trans-chalcone on non-alcoholic steatohepatitis: improvement of hepatic lipid metabolism. Biomed Pharmacother 109:1306–1312

    Article  CAS  PubMed  Google Scholar 

  30. Chen LW, Tsai MC, Chern CY, Tsao TP, Lin FY, Chen SJ et al (2020) A chalcone derivative, 1m–6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation-induced endothelial dysfunction. Br J Pharmacol 177(23):5375–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Zhang H, Zheng H, Jiang Y (2014) Hepatic inflammation scores correlate with common carotid intima-media thickness in rats with NAFLD induced by a high-fat diet. BMC Vet Res 10:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Generoso G, Janovsky CCPS, Bittencourt MS (2019) Triglycerides and triglyceride-rich lipoproteins in the development and progression of atherosclerosis. Curr Opin Endocrinol Diabetes Obes 26(2):109–116

    Article  CAS  PubMed  Google Scholar 

  33. Ebrahimi R, Shanaki M, MohasselAzadi S, Bahiraee A, Radmard AR, Poustchi H et al (2019) Low level of adiponectin predicts the development of nonalcoholic fatty liver disease: is it irrespective to visceral adiposity index, visceral adipose tissue thickness and other obesity indices? Arch Physiol Biochem. https://doi.org/10.1080/13813455.2019.1661496

    Article  PubMed  Google Scholar 

  34. Huang G, Deng J, Huang S, Shao Y, Chen C, Kuo Y (2012) Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem 132:709–716

    Article  CAS  Google Scholar 

  35. Deng Y, Tang K, Chen R, Nie H, Liang S, Zhang J et al (2019) Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp Ther Med 17(3):2091–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh H, Sidhu S, Chopra K, Khan MU (2016) Hepatoprotective effect of trans-Chalcone on experimentally induced hepatic injury in rats: inhibition of hepatic inflammation and fibrosis. Can J Physiol Pharmacol 94(8):879–887

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Miao J, Qu M, Yang GY, Shen L (2017) Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem Biophys Res Commun 493(1):64–70

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120(4):713–735

    Article  CAS  PubMed  Google Scholar 

  40. Ponnuswamy P, Schröttle A, Ostermeier E, Grüner S, Huang PL, Ertl G et al (2012) eNOS protects from atherosclerosis despite relevant superoxide production by the enzyme in apoE mice. PLoS ONE 7(1):e30193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE et al (2005) Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96(5):e48-57

    Article  CAS  PubMed  Google Scholar 

  42. Turpaev KT (2020) Transcription factor KLF2 and its role in the regulation of inflammatory processes. Biochemistry (Mosc) 85(1):54–67

    Article  CAS  Google Scholar 

  43. Young A, Wu W, Sun W, Benjamin Larman H, Wang N, Li YS et al (2009) Flow activation of AMP-activated protein kinase in vascular endothelium leads to Krüppel-like factor 2 expression. Arterioscler Thromb Vasc Biol 29(11):1902–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsieh PS, Jin JS, Chiang CF, Chan PC, Chen CH, Shih KC (2009) COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring) 17(6):1150–1157

    Article  CAS  Google Scholar 

  45. Munshi MK, Uddin MN, Glaser SS (2011) The role of the renin-angiotensin system in liver fibrosis. Exp Biol Med (Maywood) 236(5):557–566

    Article  CAS  Google Scholar 

  46. Wei Y, Clark SE, Thyfault JP, Uptergrove GM, Li W, Whaley-Connell AT et al (2009) Oxidative stress-mediated mitochondrial dysfunction contributes to angiotensin II-induced nonalcoholic fatty liver disease in transgenic Ren2 rats. Am J Pathol 174(4):1329–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu YZ, Zhang X, Wang L, Zhang F, Qiu Q, Liu ML et al (2013) An increased circulating angiotensin II concentration is associated with hypoadiponectinemia and postprandial hyperglycemia in men with nonalcoholic fatty liver disease. Intern Med 52(8):855–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been performed in the Laboratory Complex of the Science and Research Branch of Azad University.

Funding

The authors did not receive any funding from institutions or individuals for this research.

Author information

Authors and Affiliations

Authors

Contributions

LK designed the study, analyzed the data, and wrote the manuscript; MA-E and LK supervised the study and PM revised the manuscript; RR, KF, NM performed the experiments. All authors have read and agreed to publish this manuscript.

Corresponding authors

Correspondence to Mahsa Ale-Ebrahim or Leyla Karkhaneh.

Ethics declarations

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The animal protocol was authorized by the Science and Research Branch of the Islamic Azad University, Animal Ethics Committee (approval code: 176947). This study was carried out in the laboratory complex of the Science and Research Branch, Islamic Azad University, Tehran, Iran.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ale-Ebrahim, M., Rahmani, R., Faryabi, K. et al. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep 49, 3433–3443 (2022). https://doi.org/10.1007/s11033-022-07174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07174-x

Keywords

Navigation