Skip to main content

Advertisement

Log in

Midkine promotes breast cancer cell proliferation and migration by upregulating NR3C1 expression and activating the NF-κB pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BC) is the most common malignancy in females and is the second leading cause of cancer-related death among women worldwide. Midkine (MDK) is a heparin-binding growth factor that is abnormally expressed at high levels in various human malignancies. We aimed to uncover the biological function and molecular mechanism of MDK in BC cells.

Methods and results

MDA-MB-231-shMDK and T47D-shMDK BC cells were established. The in vitro biological functions of MDK were demonstrated by CCK-8 assays, Transwell assays and Western blotting, whereas qPCR pathway arrays were implemented to explore the mechanism of MDK in BC cells. Functionally, we verified that silencing MDK significantly suppressed BC cell proliferation and migration by inhibiting the activation of the nuclear factor kappa B (NF-κB) pathway and the nuclear distribution of NF-κB. Meanwhile, Ingenuity Pathway Analysis (IPA) and a qPCR pathway array revealed that silencing MDK decreased the expression of NR3C1, a potential downstream target of the NF-κB pathway. We also confirmed that treatment with an NF-κB inhibitor suppressed NR3C1 expression in BC cells. Finally, we demonstrated that silencing NR3C1 repressed BC cell proliferation and migration.

Conclusions

Our findings highlight a novel mechanism by which MDK influences BC progression via regulation of the NF-κB-NR3C1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Fahad UM (2019) Breast cancer: current perspectives on the disease status. Adv Exp Med Biol 1152:51–64. https://doi.org/10.1007/978-3-030-20301-6_4

    Article  CAS  Google Scholar 

  3. Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T (2016) Proteomic maps of breast cancer subtypes. Nat Commun 7:10259. https://doi.org/10.1038/ncomms10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150. https://doi.org/10.1016/s0140-6736(16)31891-8

    Article  PubMed  Google Scholar 

  5. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204:127–143. https://doi.org/10.1016/s0304-3835(03)00450-6

    Article  CAS  PubMed  Google Scholar 

  6. Filippou PS, Karagiannis GS, Constantinidou A (2020) Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 39:2040–2054. https://doi.org/10.1038/s41388-019-1124-8

    Article  CAS  PubMed  Google Scholar 

  7. Shin DH, Jo JY, Kim SH, Choi M, Han C, Choi BK, Kim SS (2020) Midkine is a potential therapeutic target of tumorigenesis, angiogenesis, and metastasis in non-small cell lung cancer. Cancers (Basel) 12:2402. https://doi.org/10.3390/cancers12092402

    Article  CAS  Google Scholar 

  8. Jones DR (2014) Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br J Pharmacol 171:2925–2939. https://doi.org/10.1111/bph.12601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kemper M, Hentschel W, Graß JK, Stüben BO, Konczalla L, Rawnaq T, Ghadban T, Izbicki JR, Reeh M (2020) Serum midkine is a clinical significant biomarker for colorectal cancer and associated with poor survival. Cancer Med 9:2010–2018. https://doi.org/10.1002/cam4.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Valero I, Dávila D, González-Martínez J et al (2020) Midkine signaling maintains the self-renewal and tumorigenic capacity of glioma initiating cells. Theranostics 10:5120–5136. https://doi.org/10.7150/thno.41450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ibusuki M, Fujimori H, Yamamoto Y, Ota K, Ueda M, Shinriki S, Taketomi M, Sakuma S, Shinohara M, Iwase H, Ando Y (2009) Midkine in plasma as a novel breast cancer marker. Cancer Sci 100:1735–1739. https://doi.org/10.1111/j.1349-7006.2009.01233.x

    Article  CAS  PubMed  Google Scholar 

  12. Li F, Tian P, Zhang J, Kou C (2015) The clinical and prognostic significance of midkine in breast cancer patients. Tumour Biol 36:9789–9794. https://doi.org/10.1007/s13277-015-3710-x

    Article  CAS  PubMed  Google Scholar 

  13. Gharesouran J, Taheri M, Sayad A, Ghafouri-Fard S, Mazdeh M, Omrani MD (2018) The growth arrest-specific transcript 5 (GAS5) and nuclear receptor subfamily 3 group c member 1 (NR3C1): Novel markers involved in multiple sclerosis. Int J Mol Cell Med 7:102–110. https://doi.org/10.22088/IJMCM.BUMS.7.2.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han Z, Zhang C, Wang Q, Li L, Wang M, Li X, Yang C (2021) MicroRNA-19b downregulates NR3C1 and enhances oxaliplatin chemoresistance in colon cancer via the PI3K/AKT/mTOR pathway. Clin Med Insights Oncol 15:11795549211012666. https://doi.org/10.1177/11795549211012666

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Chen F, Ren Y, Weng G, Keng PC, Chen Y, Lee SO (2019) Glucocorticoid receptor upregulation increases radioresistance and triggers androgen independence of prostate cancer. Prostate 79:1386–1398. https://doi.org/10.1002/pros.23861

    Article  CAS  PubMed  Google Scholar 

  16. Lovšin N, Marc J (2021) Glucocorticoid receptor regulates TNFSF11 transcription by binding to glucocorticoid responsive element in TNFSF11 proximal promoter region. Int J Mol Sci 22:1054. https://doi.org/10.3390/ijms22031054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Lan X, Wu D, Sunkel B, Ye Z, Huang J, Liu Z, Clinton SK, Jin VX, Wang Q (2015) Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer. Nat Commun 6:8323. https://doi.org/10.1038/ncomms9323

    Article  CAS  PubMed  Google Scholar 

  18. Pan D, Kocherginsky M, Conzen SD (2011) Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71:6360–6370. https://doi.org/10.1158/0008-5472.can-11-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He L, Yuan L, Sun Y et al (2019) Glucocorticoid receptor signaling activates TEAD4 to promote breast cancer progression. Cancer Res 79:4399–4411. https://doi.org/10.1158/0008-5472.can-19-0012

    Article  CAS  PubMed  Google Scholar 

  20. Weckbach LT, Grabmaier U, Uhl A et al (2019) Midkine drives cardiac inflammation by promoting neutrophil trafficking and NETosis in myocarditis. J Exp Med 216:350–368. https://doi.org/10.1084/jem.20181102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto K, Kadomatsu K (2012) Midkine in the pathology of cancer, neural disease, and inflammation. Pathol Int 62:445–455. https://doi.org/10.1111/j.1440-1827.2012.02815.x

    Article  CAS  PubMed  Google Scholar 

  22. Yuan K, Chen Z, Li W, Gao CE, Li G, Guo G, Yang Y, Ai Y, Wu L, Zhang M (2015) MDK protein overexpression correlates with the malignant status and prognosis of non-small cell lung cancer. Arch Med Res 46:635–641. https://doi.org/10.1016/j.arcmed.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  23. Tian W, Shen J, Chen W (2017) Suppression of midkine gene promotes the antitumoral effect of cisplatin on human gastric cancer cell line AGS in vitro and in vivo via the modulation of notch signaling pathway. Oncol Rep 38:745–754. https://doi.org/10.3892/or.2017.5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rawnaq T, Dietrich L, Wolters-Eisfeld G, Uzunoglu FG, Vashist YK, Bachmann K, Simon R, Izbicki JR, Bockhorn M, Güngör C (2014) The multifunctional growth factor midkine promotes proliferation and migration in pancreatic cancer. Mol Cancer Res 12:670–680. https://doi.org/10.1158/1541-7786.mcr-13-0467

    Article  CAS  PubMed  Google Scholar 

  25. Erdogan S, Turkekul K, Dibirdik I, Doganlar O, Doganlar ZB, Bilir A, Oktem G (2018) Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother 107:793–805. https://doi.org/10.1016/j.biopha.2018.08.061

    Article  CAS  PubMed  Google Scholar 

  26. Erdogan S, Turkekul K, Dibirdik I, Doganlar ZB, Doganlar O, Bilir A (2020) Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest New Drugs 38:246–263. https://doi.org/10.1007/s10637-019-00774-8

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Meng Z, Zhang M et al (2014) Immunohistochemical evaluation of midkine and nuclear factor-kappa B as diagnostic biomarkers for papillary thyroid cancer and synchronous metastasis. Life Sci 118:39–45. https://doi.org/10.1016/j.lfs.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  28. Kuo AH, Stoica GE, Riegel AT, Wellstein A (2007) Recruitment of insulin receptor substrate-1 and activation of NF-kappaB essential for midkine growth signaling through anaplastic lymphoma kinase. Oncogene 26:859–869. https://doi.org/10.1038/sj.onc.1209840

    Article  CAS  PubMed  Google Scholar 

  29. Veneris JT, Huang L, Churpek JE, Conzen SD, Fleming GF (2019) Glucocorticoid receptor expression is associated with inferior overall survival independent of BRCA mutation status in ovarian cancer. Int J Gynecol Cancer 29:357–364. https://doi.org/10.1136/ijgc-2018-000101

    Article  PubMed  Google Scholar 

  30. Veneris JT, Darcy KM, Mhawech-Fauceglia P, Tian C, Lengyel E, Lastra RR, Pejovic T, Conzen SD, Fleming GF (2017) High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer. Gynecol Oncol 146:153–160. https://doi.org/10.1016/j.ygyno.2017.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tangen IL, Veneris JT, Halle MK, Werner HM, Trovik J, Akslen LA, Salvesen HB, Conzen SD, Fleming GF, Krakstad C (2017) Expression of glucocorticoid receptor is associated with aggressive primary endometrial cancer and increases from primary to metastatic lesions. Gynecol Oncol 147:672–677. https://doi.org/10.1016/j.ygyno.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  32. Lamb CA, Vanzulli SI, Lanari C (2019) Hormone receptors in breast cancer: more than estrogen receptors. Medicina (B Aires) 79:540–545

    CAS  Google Scholar 

  33. Shi W, Wang D, Yuan X, Liu Y, Guo X, Li J, Song J (2019) Glucocorticoid receptor-IRS-1 axis controls EMT and the metastasis of breast cancers. J Mol Cell Biol 11:1042–1055. https://doi.org/10.1093/jmcb/mjz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conway ME, McDaniel JM, Graham JM, Guillen KP, Oliver PG, Parker SL, Yue P, Turkson J, Buchsbaum DJ, Welm BE, Myers RM, Varley KE (2020) STAT3 and GR cooperate to drive gene expression and growth of basal-like triple-negative breast cancer. Cancer Res 80:4355–4370. https://doi.org/10.1158/0008-5472.can-20-1379

    Article  CAS  PubMed  Google Scholar 

  35. Sorrentino G, Ruggeri N, Zannini A et al (2017) Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun 8:14073. https://doi.org/10.1038/ncomms14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82002919), Jiangsu Province Key Laboratory of Immunity and Metabolism Open Project Fund (JSKIM201803), Xuzhou Science and Technology Project (KC20101, KC20070) and Jiangsu Province Key Laboratory of Anesthesiology Open Project Fund (XZSYSKF2019023).

Author information

Authors and Affiliations

Authors

Contributions

LZ and QW proposed the hypotheses and designed the research; LZ, YX performed the experiments; YX and PZ participated in the analysis of the results; LS and MZ edited the pictures; LS revised the manuscript; QW supervised research and Finalize the final draft.

Corresponding author

Correspondence to Qingling Wang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, L., Xu, Y. et al. Midkine promotes breast cancer cell proliferation and migration by upregulating NR3C1 expression and activating the NF-κB pathway. Mol Biol Rep 49, 2953–2961 (2022). https://doi.org/10.1007/s11033-022-07116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07116-7

Keywords

Navigation