Skip to main content
Log in

OCC-1D regulates Wnt signaling pathway: potential role of long noncoding RNA in colorectal cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aberrant activation of the Wnt signaling pathway is observed in most colorectal cancers (CRC). OCC-1D is a splice variant of OCC-1 gene which is considered as a long noncoding RNA (lncRNA) due to lacking the translational initiation codon of the gene. Here, we sought supporting evidence for the effects of OCC-1D on the Wnt pathway and cell cycle progression in CRC.

Methods and results

TOP/FOPflash assay and qRT-PCR indicated that expression alterations of OCC-1D could change Wnt signaling activity in colon cancer cells. Consistently, immunocytochemistry results showed the effect of OCC-1D overexpression on nuclear localization of β-catenin proteins in SW480 cells. Flow cytometry, wound healing and MTT assay confirmed the cell cycle stimulatory effects of OCC-1D in CRC-originated cell lines (SW480 and HCT116). qRT-PCR revealed a positive correlation between the expression level of OCC-1D and its neighboring gene, APPL2. Two distinct tests, downregulation of APPL2 mRNA by using shRNA and Wnt signaling inhibition by using small molecule, along with OCC-1D overexpression confirmed that OCC-1D lncRNA exerts its effect on Wnt signaling pathway through expression modulation of APPL2 gene.

Conclusions

Collectively, we suggested the putative regulatory effects of OCC-1D lncRNA on cell cycle progression and Wnt signaling activation through enhancing the APPL2 gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

OCC-1 :

Overexpressed in Colorectal Carcinoma-1

lncRNA:

Long non-coding RNA

ICC:

Immunocytochemistry assay

APPL2 :

Adaptor Protein, Phosphotyrosine Interacting With PH Domain And Leucine Zipper 2

HDAC :

Histone deacetylase complex

GSK -3 β :

Glycogen synthase kinase3β

TCF :

Transcription Factor

shRNA:

Small hairpin RNA

References

  1. Atkin WS et al (2010) Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. The Lancet 375(9726):1624–1633

    Article  Google Scholar 

  2. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  3. Houlston RS (2012) COGENT (COlorectal cancer GENeTics) revisited. Mutagenesis 27(2):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lubbe S et al (2012) The 14q22. 2 colorectal cancer variant rs4444235 shows cis-acting regulation of BMP4. Oncogene 31(33):3777–3784

    Article  CAS  PubMed  Google Scholar 

  5. Pittman AM et al (2009) The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 19(6):987–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zampetaki A, Albrecht A, Steinhofel K (2018) Long non-coding RNA structure and function: is there a link? Front Physiol 9:1201

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu M-D, Qi P, Du X (2014) Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Mod Pathol 27(10):1310–1320

    Article  CAS  PubMed  Google Scholar 

  9. Pibouin L et al (2002) Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet 133(1):55–60

    Article  CAS  PubMed  Google Scholar 

  10. Kikuchi K et al (2009) Transcripts of unknown function in multiple-signaling pathways involved in human stem cell differentiation. Nucleic Acids Res 37(15):4987–5000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Najafi H et al (2017) Alternative splicing of the OCC-1 gene generates three splice variants and a novel exonic microRNA, which regulate the Wnt signaling pathway. RNA 23(1):70–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rashid S et al (2009) Endosomal adaptor proteins APPL1 and APPL2 are novel activators of β-catenin/TCF-mediated transcription. J Biol Chem 284(27):18115–18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Behrens J et al (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  14. Van de Wetering M et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88(6):789–799

    Article  PubMed  Google Scholar 

  15. Morgan RG et al (2019) LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica 104(7):1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schenck A et al (2008) The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133(3):486–497

    Article  CAS  PubMed  Google Scholar 

  17. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25(57):7531–7537

    Article  CAS  PubMed  Google Scholar 

  18. Guo J, Wang M, Liu X (2015) MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma. J Exp Clin Cancer Res 34(1):1

    Article  CAS  Google Scholar 

  19. Ismail R et al (2016) Combination of VP3 and CD147-knockdown enhance apoptosis and tumor growth delay index in colorectal tumor allograft. BMC Cancer 16(1):1

    Article  CAS  Google Scholar 

  20. Ma H et al (2014) Pol III promoters to express small RNAs: delineation of transcription initiation. Mol Ther-Nucleic Acids 3:e161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aiyar A, Xiang Y, Leis J (1996) Site-directed mutagenesis using overlap extension PCR. In vitro mutagenesis protocols. Springer, pp 177–191

    Chapter  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  23. Najdi R et al (2012) A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84(2):203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shtutman M et al (1999) The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci 96(10):5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang S et al (2012) Wnt/β-catenin signaling pathway upregulates c-Myc expression to promote cell proliferation of P19 teratocarcinoma cells. Anat Rec 295(12):2104–2113

    Article  CAS  Google Scholar 

  26. Albanese C et al (2003) IKKα regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol Biol Cell 14(2):585–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103(2):311–320

    Article  CAS  PubMed  Google Scholar 

  28. Morin PJ et al (1997) Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275(5307):1787–1790

    Article  CAS  PubMed  Google Scholar 

  29. Tetsu O, McCormick F (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426

    Article  CAS  PubMed  Google Scholar 

  30. Athineos D, Sansom O (2010) Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene 29(17):2585–2590

    Article  CAS  PubMed  Google Scholar 

  31. He T-C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  32. Lavergne E et al (2011) Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin. Oncogene 30(4):423–433

    Article  CAS  PubMed  Google Scholar 

  33. Feng Z et al (2017) miR-590-3p promotes colon cancer cell proliferation via Wnt/beta-catenin signaling pathway by inhibiting WIF1 and DKK1. Eur Rev Med Pharmacol Sci 21(21):4844–4852

    PubMed  Google Scholar 

  34. Datler C, Grimm S (2013) Reconstitution of CKMT1 expression fails to rescue cells from mitochondrial membrane potential dissipation: Implications for controlling RNAi experiments. Biochim Biophys Acta (BBA) 1833(12):2844–2855

    Article  CAS  Google Scholar 

  35. Wu X et al (2016) Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol 48(4):1333–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chial HJ et al (2008) Membrane targeting by APPL1 and APPL2: dynamic scaffolds that oligomerize and bind phosphoinositides. Traffic 9(2):215–229

    Article  CAS  PubMed  Google Scholar 

  37. Ørom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7(5):582–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang X et al (2009) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schatoff EM, Leach BI, Dow LE (2017) Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep 13(2):101–110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Sadat Dokanehiifard, Zahra Shabaninejad, and Dr. Fahimeh sadat Hosseini aghdaee for their kind advices and help during performing the experiments.

Funding

This work was supported by Tarbiat Modares University (TMU) financial support.

Author information

Authors and Affiliations

Authors

Contributions

FY made the conception and design. BS participated in the development of methodology. FY performed the experiments. FY analyzed the data. FY and HN wrote the manuscript. BS reviewed and/or revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bahram M. Soltani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, F., Najafi, H., Behmanesh, M. et al. OCC-1D regulates Wnt signaling pathway: potential role of long noncoding RNA in colorectal cancer. Mol Biol Rep 49, 3377–3387 (2022). https://doi.org/10.1007/s11033-021-07110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07110-5

Keywords

Navigation