Skip to main content
Log in

Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported.

Methods and results

Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress.

Conclusions

These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The dataset generated or analyzed in this study are included in this article and its supplementary information files.

References

  1. Woodgett JR, Cohen P (1984) Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta 788:339–347. https://doi.org/10.1016/0167-4838(84)90047-5

    Article  CAS  PubMed  Google Scholar 

  2. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551. https://doi.org/10.1038/nrn2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim L, Kimmel AR (2006) GSK3 at the edge: regulation of developmental specification and cell polarization. Curr Drug Targets 7:1411–1419. https://doi.org/10.2174/1389450110607011411

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168. https://doi.org/10.1016/j.tibs.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  5. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186. https://doi.org/10.1242/jcs.00384

    Article  CAS  PubMed  Google Scholar 

  6. Dornelas MC, Lejeune B, Dron M, Kreis M (1998) The Arabidopsis SHAGGY-related protein kinase (ASK) gene family: structure, organization and evolution. Gene 212:249–257. https://doi.org/10.1016/s0378-1119(98)00147-4

    Article  CAS  PubMed  Google Scholar 

  7. Gao X, Zhang JQ, Zhang X, Zhou J, Jiang Z, Huang P, Tang Z, Bao Y, Cheng J, Tang H et al (2019) Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-Like kinase OsGSK3 to modulate brassinosteroid signaling. Plant Cell 31:1077–1093. https://doi.org/10.1105/tpc.18.00836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang SH, Liu YX, Deng R, Lei TT, Tian AJ, Ren HH, Wang SF, Wang XF (2021) Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 766:145–156. https://doi.org/10.1016/j.gene.2020.145156

    Article  CAS  Google Scholar 

  9. Groszyk J, Yanushevska Y, Zielezinski A, Nadolska-Orczyk A, Karlowski WM, Orczyk W (2018) Annotation and profiling of barley GLYCOGEN SYNTHASE3/Shaggy-like genes indicated shift in organ-preferential expression. PLoS ONE 13:e0199364. https://doi.org/10.1371/journal.pone.0199364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Yang Z, Zhang B, Yu D, Liu J, Gong Q, Qanmber G, Li Y, Lu L, Lin Y et al (2018) Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC Plant Biol 18:330. https://doi.org/10.1186/s12870-018-1526-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng J, Haider MS, Huang J, Xu Y, Pervaiz T, Feng J, Zheng H, Tao J (2020) Functional characterization of VvSK gene family in Grapevine (Vitis vinifera L.) revealing their role in berry ripening. Int J Mol Sci 21:4336. https://doi.org/10.3390/ijms21124336

    Article  CAS  PubMed Central  Google Scholar 

  12. Mao J, Li W, Liu J, Li J (2021) Versatile physiological functions of plant GSK3-like kinases. Genes 100:552–565. https://doi.org/10.3390/genes12050697

    Article  CAS  Google Scholar 

  13. Sun S, Wang T, Wang L, Li X, Jia Y, Liu C, Huang X, Xie W, Wang X (2018) Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat Commun 9:2523. https://doi.org/10.1038/s41467-018-04952-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yanru Hu, Diqiu Yu (2014) BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408. https://doi.org/10.1105/tpc.114.130849

    Article  CAS  Google Scholar 

  15. Cai Z, Jingjing L, Haijiao W, Cangjing Y, Yuxiao C (2014) GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci USA 111:9651–9656. https://doi.org/10.1073/pnas.1316717111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng P, Zhao J, Zhu Y, Asami T, Li J (2010) A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates. J Biol Chem 285:24646–24653. https://doi.org/10.1074/jbc.M110.142547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Zhang B, Yu H (2021) GSK3s: nodes of multilayer regulation of plant development and stress responses. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2021.07.017

    Article  PubMed  Google Scholar 

  18. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190. https://doi.org/10.1073/pnas.152342599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol 150:710–721. https://doi.org/10.1104/pp.109.138099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol 130:1506–1515. https://doi.org/10.1104/pp.010496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Claisse G, Charrier B, Kreis M (2007) The Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Mol Biol 64:113–124. https://doi.org/10.1007/s11103-007-9138-y

    Article  CAS  PubMed  Google Scholar 

  22. Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–2577. https://doi.org/10.1105/tpc.112.097394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kloc Y, Dmochowska-Boguta M, Zielezinski A, Nadolska-Orczyk A, Karlowski WM, Orczyk W (2020) Silencing of HvGSK1.1–A GSK3/SHAGGY-like kinase-enhances barley (Hordeum vulgare L.) growth in normal and in salt stress conditions. Int J Mol Sci 21:6616. https://doi.org/10.3390/ijms21186616

    Article  CAS  PubMed Central  Google Scholar 

  24. Saidi Y, Hearn TJ, Coates JC (2012) Function and evolution of “green” GSK3/Shaggy-like kinases. Trends Plant Sci 17:39–46. https://doi.org/10.1016/j.tplants.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  25. Youn JH, Kim TW (2015) Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8:552–565. https://doi.org/10.1016/j.molp.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  26. Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, Petutschnig E, Rozhon W, Heuck A, Clausen T, Jonak C (2012) Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell 24:3380–3392. https://doi.org/10.1105/tpc.112.101279

    Article  CAS  Google Scholar 

  27. Li JF, Zhou HP, Zhang Y, Li Z, Yang YQ, Guo Y (2020) The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev Cell 55:367–380. https://doi.org/10.1016/j.devcel.2020.08.005

    Article  CAS  PubMed  Google Scholar 

  28. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466. https://doi.org/10.1007/s11103-007-9213-4

    Article  CAS  PubMed  Google Scholar 

  29. Thitisaksakul M, Arias MC, Dong S, Beckles DM (2017) Overexpression of GSK3-like kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch. Funct Plant Biol 44:705–719. https://doi.org/10.1071/FP16424

    Article  CAS  PubMed  Google Scholar 

  30. Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, Wulff BBH, Steuernagel B, Mayer KFX, Olsen OA et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092. https://doi.org/10.1126/science.1250092

    Article  CAS  PubMed  Google Scholar 

  31. Christov NK, Christova PK, Kato H, Liu Y, Sasaki K, Imai R (2014) TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 84:251–260. https://doi.org/10.1016/j.plaphy.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Bittner T, Campagne S, Neuhaus G, Rensing SA, Fischer-Iglesias C (2013) Identification and characterization of two wheat glycogen synthase kinase 3/ SHAGGY-like kinases. BMC Plant Biol 13:1–15. https://doi.org/10.1186/1471-2229-13-64

    Article  CAS  Google Scholar 

  33. Bittner T, Nadler S, Schulze E, Fischer-Iglesias C (2015) Two homolog wheat glycogen synthase kinase 3/SHAGGY—like kinases are involved in brassinosteroid signaling. BMC Plant Biol 15:247. https://doi.org/10.1186/s12870-015-0617-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Ronen G et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191

    Article  CAS  PubMed  Google Scholar 

  35. Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. https://doi.org/10.1104/pp.15.01667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu ZS, Xin MM, Qin JX, Peng HR, Ni ZF, Yao YY, Sun QX (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:152. https://doi.org/10.1186/s12870-015-0511-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  Google Scholar 

  38. Wang J, Sun N, Deng T, Zhang LD, Zuo KJ (2014) Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics 15:961. https://doi.org/10.1186/1471-2164-15-961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang YP, Li JP, Paterson AH (2013) MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458–1460. https://doi.org/10.1093/bioinformatics/btt150

    Article  CAS  PubMed  Google Scholar 

  40. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma SW, Wang M, Wu JH, Guo WL, Chen YM, Li GW, Wang YP, Shi WM, Xia GM, Fu DL (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant. https://doi.org/10.1016/j.molp.2021.10.006

    Article  PubMed  Google Scholar 

  42. Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, Shim JE, Shim H, Kim H, Kim C et al (2015) AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res 43:D996-1002. https://doi.org/10.1093/nar/gku1053

    Article  CAS  PubMed  Google Scholar 

  43. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257-260. https://doi.org/10.1093/nar/gku949

    Article  CAS  PubMed  Google Scholar 

  44. Charrier B, Champion A, Henry Y, Kreis M (1999) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590. https://doi.org/10.1104/pp.009175

    Article  CAS  Google Scholar 

  45. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128. https://doi.org/10.1016/j.pbi.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  46. Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G (2018) The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. Plant J 94:991–1009. https://doi.org/10.1111/tpj.13913

    Article  CAS  PubMed  Google Scholar 

  47. Guo ZH, Ye ZW, Haslam RP, Michaelson LV, Napier JA, Chye ML (2019) Arabidopsis cytosolic acyl-CoA-binding proteins function in determining seed oil composition. Plant Direct 3:e00182. https://doi.org/10.1002/pld3.182

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Huang X, Meng L, Ping H, Zhang Y (2016) Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytol 212:637–645. https://doi.org/10.1111/nph.14072

    Article  CAS  PubMed  Google Scholar 

  49. Chowdhury Z, Mohanty D, Giri MK, Venables BJ, Chaturvedi R, Chao A, Petros RA, Shah J (2020) Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. J Exp Bot 71:4903–4913. https://doi.org/10.1093/jxb/eraa232

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Liu C, Yang D, Yu H, Liou YC (2010) Pin1At encoding a peptidyl-prolyl cis/trans isomerase regulates flowering time in Arabidopsis. Mol Cell 37:112–122. https://doi.org/10.1016/j.molcel.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  51. Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005) Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41:845–858. https://doi.org/10.1111/j.1365-313X.2005.02345.x

    Article  CAS  PubMed  Google Scholar 

  52. Li N, Yuan L, Liu N, Shi D, Li X, Tang Z, Liu J, Sundaresan V, Yang WC (2009) SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiol 151:1486–1497. https://doi.org/10.1104/pp.109.142414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh S, Singh A, Roy S, Sarkar AK (2012) SWP1 negatively regulates lateral root initiation and elongation in Arabidopsis. Plant Signal Behav 7:1522–1525. https://doi.org/10.4161/psb.22099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho C, Jeon E, Pandey SK, Ha SH, Kim J (2019) LBD13 positively regulates lateral root formation in Arabidopsis. Planta 249:1251–1258. https://doi.org/10.1007/s00425-018-03087-x

    Article  CAS  PubMed  Google Scholar 

  55. Yoo MJ, Albert VA, Soltis PS, Soltis DE (2006) Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biol 6:3. https://doi.org/10.1186/1471-2229-6-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A et al (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089. https://doi.org/10.1126/science.aar6089

    Article  CAS  PubMed  Google Scholar 

  57. Yu K, Feng M, Yang G, Sun L, Qin Z, Cao J, Wen J, Li H, Zhou Y, Chen X et al (2020) Changes in alternative splicing in response to domestication and polyploidization in wheat. Plant Physiol 184:1955–1968. https://doi.org/10.1104/pp.20.00773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou M, Zheng S, Liu R, Lu J, Lu L, Zhang C, Liu Z, Luo C, Zhang L, Yant L et al (2019) Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 20:505. https://doi.org/10.1186/s12864-019-5876-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J, Peelman F, Coutuer S, Denayer T, Jansen L, Nguyen L et al (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16:594–604. https://doi.org/10.1016/j.chembiol.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng XJ, Xin MM, Xu RB, Chen ZY, Cai WL, Chai LL, Xu HW, Jia L, Feng ZY, Wang ZH et al (2020) A single amino acid substitution in STKc_GSK3 Kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. Plant Cell 32:923–934. https://doi.org/10.1105/tpc.19.00580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. https://doi.org/10.1186/1471-2229-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:29–298. https://doi.org/10.1016/S0169-5347(03)00033-8

    Article  Google Scholar 

  63. Schilling S, Kennedy A, Pan SR, Jermiin LS, Melzer R (2019) Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications may have facilitated adaptation to different environmental conditions. New Phytol 225:511–529. https://doi.org/10.1111/nph.16122

    Article  CAS  PubMed  Google Scholar 

  64. Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20:38. https://doi.org/10.1186/s13059-019-1650-2

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ma J, Gao S, Stiller J, Jiang QT, Lan XJ, Liu YX, Pu ZE, Wang J, Wei Y, Zheng YL (2015) Identification of genes bordering breakpoints of the pericentric inversions on 2B, 4B, and 5A in bread wheat (Triticum aestivum L.). Genome 58:385–390. https://doi.org/10.1139/gen-2015-0060

    Article  CAS  PubMed  Google Scholar 

  66. Luo W, Qin N, Mu Y, Tang HP, Deng M, Liu YX, Chen GD, Jiang QT, Chen GY, Wei YM (2018) Variation and diversity of the breakpoint sequences on 4AL for the 4AL/5AL translocation in Triticum. Genome 16:635–641. https://doi.org/10.1139/gen-2018-0060

    Article  CAS  Google Scholar 

  67. Dornelas MC, Van Lammeren AA, Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J 21:419–429. https://doi.org/10.1046/j.1365-313x.2000.00691.x

    Article  CAS  PubMed  Google Scholar 

  68. Li C, Zhang B, Chen B, Ji L, Yu H (2018) Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nat Commun 9:571. https://doi.org/10.1038/s41467-018-03013-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dornelas MC, Wittich P, von Recklinghausen I, Lammeren A, Kreis M (1999) Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family. Plant Mol Biol Rep 39:137–147. https://doi.org/10.1023/A:1006102812280

    Article  CAS  Google Scholar 

  70. Li T, Lei W, He R, Tang X, Han J, Zou L, Yin Y, Lin H, Zhang D (2020) Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis. PLoS Genet 16:e1008883. https://doi.org/10.1371/journal.pgen.1008883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheng Y, Zhu W, Chen Y, Ito S, Asami T, Wang X (2014) Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases. Elife 3:e02525. https://doi.org/10.7554/eLife.02525

    Article  PubMed Central  Google Scholar 

  72. Cho H, Ryu H, Rho S, Hill K, Smith S, Audenaert D, Park J, Han S, Beeckman T, Bennett MJ et al (2014) A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol 16:66–76. https://doi.org/10.1038/ncb2893

    Article  CAS  PubMed  Google Scholar 

  73. Wang HJ, Wang XL (2018) GSK3-like kinases are a class of positive components in the core ABA signaling pathway. Mol Plant 11:761–763. https://doi.org/10.1016/j.molp.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  74. Kempa S, Rozhon W, Samaj J, Erban A, Baluska F, Becker T, Haselmayer J, Schleiff E, Kopka J, Hirt H et al (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090. https://doi.org/10.1111/j.1365-313X.2006.03025.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang C, Zhao H, Liu Y, Li Q, Liu X, Tan H, Yuan C, Dong Y (2010) Isolation and characterization of a novel glycogen synthase kinase-3 gene, GmGSK, in Glycine max L. that enhances abiotic stress tolerance in Saccharomyces cerevisiae. Biotechnol Lett 32:861–866. https://doi.org/10.1007/s10529-010-0220-1

    Article  CAS  PubMed  Google Scholar 

  76. Jiang H, Tang B, Xie Z, Nolan T, Ye H, Song GY, Walley J, Yin Y (2019) GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. Plant J 100:923–937. https://doi.org/10.1111/tpj.14484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tian Tian, Peng Wang and Rui He for technical support.

Funding

This research was financially supported by the Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2019-5, GHSJ-2020-Z4), the National Natural Science Foundation of China (Grant Nos. 32160487), the National Science Foundation of Gansu Province, China (Grant Nos. 21JR7RA828), and the Developmental Funds of Innovation Capacity in Higher Education of Gansu, China (2021B-125).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: PZ, LZ, TC; Conceptualization: PZ, TC, YL, DY; Methodology: PZ, LZ, FJ, DY; Formal analysis and investigation: PZ, TC, YL, JM; Writing—original draft preparation: PZ, FJ; Writing—review and editing: PZ, DY; Funding acquisition: PZ, DY; Resources: PZ, DY; Supervision: PZ, DY.

Corresponding author

Correspondence to Delong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, L., Chen, T. et al. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 49, 2899–2913 (2022). https://doi.org/10.1007/s11033-021-07105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07105-2

Keywords

Navigation