Skip to main content
Log in

Demethylase FTO promotes mechanical stress induced osteogenic differentiation of BMSCs with up-regulation of HIF-1α

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In orthodontics, mechanical stress plays an important role in the process of bone remodeling. Mechanical stress has an effect on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism remains to be studied. The aim of this study is to investigate the effects of demethyltransferase fat mass and obesity-associated (FTO) on osteogenic differentiation of BMSCs under mechanical stress condition.

Methods and results

The rat BMSCs were cultured in vitro, followed by flow cytometry to identify the cell surface antigens. Osteogenic differentiation of BMSCs was induced by mechanical stress by using the flexcell tension system for 6 h every day and 3 days in total. BMSCs were transfected by using plasmid for FTO knockdown. The expression level of FTO, hypoxia-inducible factor (HIF)-1α, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins (BMPs) and alkaline phosphatase (ALP) were measured by real-time qPCR, western blotting. ALP activity were determined by ALP staining assays. The expression of FTO and HIF-1α in BMSCs with mechanical stress were significantly higher than BMSCs without mechanical stress, also, the expression of osteogenic differentiation markers were higher in BMSCs with mechanical stress. Knockdown of FTO decreased expression of osteogenic differentiation marker and ALP activity in stretched BMSCs. In addition, the expression of HIF-1α was decreased after knocking down FTO.

Conclusions

FTO promotes the expression of HIF-1α and osteogenic differentiation under the condition of mechanical stress. This finding may facilitate the clinical application of orthodontics and the mechanism research of mechanical stress-induced osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li Y, Jacox LA, Little SH, Ko CC (2018) Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J Med Sci 34:207–214. https://doi.org/10.1016/j.kjms.2018.01.007

    Article  PubMed  Google Scholar 

  2. Drager J, Harvey EJ, Barralet J (2015) Hypoxia signalling manipulation for bone regeneration. Expert Rev Mol Med 17:e6. https://doi.org/10.1017/erm.2015.4

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G (2019) Regulatory role of RNA N(6)-methyladenosine modification in bone biology and osteoporosis. Front Endocrinol (Lausanne) 10:911. https://doi.org/10.3389/fendo.2019.00911

    Article  Google Scholar 

  4. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 41:D262–D267. https://doi.org/10.1093/nar/gks1007

    Article  CAS  PubMed  Google Scholar 

  5. Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, Wang SY, Baltissen MPA, Jansen P, Rossa M, Muller M, Stunnenberg HG, He C, Carell T, Vermeulen M (2017) N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol 24:870–878. https://doi.org/10.1038/nsmb.3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003. https://doi.org/10.1098/rsob.160003

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29:108–115. https://doi.org/10.1016/j.tig.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  9. Tian C, Huang Y, Li Q, Feng Z, Xu Q (2019) Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci. https://doi.org/10.3390/ijms20030551

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Gu X, Li D, Cai L, Xu Q (2019) METTL3 regulates osteoblast differentiation and inflammatory response via smad signaling and MAPK signaling. Int J Mol Sci. https://doi.org/10.3390/ijms21010199

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou T, Han D, Liu J, Shi J, Zhu P, Wang Y, Dong N (2021) Factors influencing osteogenic differentiation of human aortic valve interstitial cells. J Thorac Cardiovasc Surg 161:e163–e185. https://doi.org/10.1016/j.jtcvs.2019.10.039

    Article  CAS  PubMed  Google Scholar 

  12. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8:358–366. https://doi.org/10.1038/nrrheum.2012.36

    Article  CAS  PubMed  Google Scholar 

  13. Johnson RW, Sowder ME, Giaccia AJ (2017) Hypoxia and bone metastatic disease. Curr Osteoporos Rep 15:231–238. https://doi.org/10.1007/s11914-017-0378-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626. https://doi.org/10.1172/JCI31581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wan C, Shao J, Gilbert SR, Riddle RC, Long F, Johnson RS, Schipani E, Clemens TL (2010) Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci 1192:322–326. https://doi.org/10.1111/j.1749-6632.2009.05238.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calvert JW, Cahill J, Yamaguchi-Okada M, Zhang JH (2006) Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol 101:853–65. https://doi.org/10.1152/japplphysiol.00268.2006

    Article  CAS  PubMed  Google Scholar 

  17. Bruderer M, Richards RG, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28:269–286. https://doi.org/10.22203/ecm.v028a19

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Chen M, Ma L, Dang X, Du G (2021) piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging (Albany NY) 13:23361–23375. https://doi.org/10.18632/aging.203630

    Article  Google Scholar 

  19. Wiren KM, Chapman Evans A, Zhang XW (2002) Osteoblast differentiation influences androgen and estrogen receptor-alpha and -beta expression. J Endocrinol 175:683–694. https://doi.org/10.1677/joe.0.1750683

    Article  CAS  PubMed  Google Scholar 

  20. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104. https://doi.org/10.1101/gad.1276205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizuno TM (2018) Fat mass and obesity associated (FTO) gene and hepatic glucose and lipid metabolism. Nutrients. https://doi.org/10.3390/nu10111600

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougneres P, Kovacs P, Marre M, Balkau B, Cauchi S, Chevre JC, Froguel P (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726. https://doi.org/10.1038/ng2048

    Article  CAS  PubMed  Google Scholar 

  23. Deng X, Su R, Stanford S, Chen J (2018) Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne) 9:396. https://doi.org/10.3389/fendo.2018.00396

    Article  Google Scholar 

  24. Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, Liu S, Yu M, Yan G, Feng C, He M, Zhang L, Ding F, Ma W, Bi Z, Xu C, Yuan Y, Cai B, Yang L (2019) miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids 17:590–600. https://doi.org/10.1016/j.omtn.2019.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, Zhou XZ, Xu YJ (2018) The GDF11-FTO-PPARgamma axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis 1864:3644–3654. https://doi.org/10.1016/j.bbadis.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  26. Son HE, Min HY, Kim EJ, Jang WG (2020) Fat mass and obesity-associated (FTO) stimulates osteogenic differentiation of C3H10T1/2 cells by inducing mild endoplasmic reticulum stress via a positive feedback loop with p-AMPK. Mol Cells 43:58–65. https://doi.org/10.14348/molcells.2019.0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yellowley CE, Genetos DC (2019) Hypoxia signaling in the skeleton: implications for bone health. Curr Osteoporos Rep 17:26–35. https://doi.org/10.1007/s11914-019-00500-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lim CS, Qiao X, Reslan OM, Xia Y, Raffetto JD, Paleolog E, Davies AH, Khalil RA (2011) Prolonged mechanical stretch is associated with upregulation of hypoxia-inducible factors and reduced contraction in rat inferior vena cava. J Vasc Surg 53:764–773. https://doi.org/10.1016/j.jvs.2010.09.018

    Article  PubMed  Google Scholar 

  29. Liang YM, Huang XL, Chen G, Sheng LL, Li QF (2014) Activated hypoxia-inducible factor-1alpha pathway modulates early events in stretch-induced skin neovascularization via stromal cell-derived factor-1 and vascular endothelial growth factor. Br J Dermatol 171:996–1005. https://doi.org/10.1111/bjd.12920

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Huang X, Yu H, Yang J, Li Y, Yuan X, Guo Q (2019) HIF-1alpha-TWIST pathway restrains cyclic mechanical stretch-induced osteogenic differentiation of bone marrow mesenchymal stem cells. Connect Tissue Res 60:544–554. https://doi.org/10.1080/03008207.2019.1601185

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Yu W, Liu Y, Yuan X, Yuan R, Guo Q (2019) Expression of HIF1alpha in cycling stretchinduced osteogenic differentiation of bone mesenchymal stem cells. Mol Med Rep 20:4489–4498. https://doi.org/10.3892/mmr.2019.10715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. https://doi.org/10.1038/nature12730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Nature Science Foundation of China (Grant No. 11602122); Shandong Provincial Key Laboratory of Oral Tissue Regeneration Open Project Fund (Grant No. SDKQ202002); Shandong Province Medicine and Health Science and Technology Development Plan Project (Grant No. 202008030332).

Author information

Authors and Affiliations

Authors

Contributions

RS, QG, ZC, and WL established the initial design of the study. RS, ZC, WL, and FZ performed the experiments and analyzed the data. RS, CZ, QG, and FY Participated in manuscript writing. FY, FZ, CZ, and QG confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Qingyuan Guo.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests associated with the manuscript.

Ethical approval

The present study was approved by the Ethics Committee of Qingdao Municipal Hospital, Qingdao, China.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 8120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Zhang, C., Liu, Y. et al. Demethylase FTO promotes mechanical stress induced osteogenic differentiation of BMSCs with up-regulation of HIF-1α. Mol Biol Rep 49, 2777–2784 (2022). https://doi.org/10.1007/s11033-021-07089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07089-z

Keywords