Skip to main content
Log in

Hepatic microRNA modulation might be an early event to non-alcoholic fatty liver disease development driven by high-fat diet in male mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

Metabolic alterations caused by an imbalance of macronutrient consumption are often related to the modulation of microRNAs (miRNAs), which could alter mRNAs expression profile and accelerate the development of non-alcoholic fatty liver disease (NAFLD).

Aims

This study aimed to investigate the contribution of miRNAs in modulating early stages of NAFLD in mice submitted to a high-fat diet (HFD).

Methods and results

Male Swiss mice, fed either a control diet or an HFD for 1, 3, 7, 15, 30, 56 days, were assessed for metabolic alterations, gene expression and NAFLD markers. A hepatocyte cell line was used to investigate the effects of miR-370 modulation on enzymes involved in β-oxidation. Body weight and adiposity were higher after 7 days of HFD. Fasting glucose and insulin increased after 3 and 7 days of HFD, respectively. While hepatic lipid content increased from the first day on, hepatic glycogen had a decrease after 3 days of HFD consumption. miR-370 and Let-7 expression increased with acute and chronic exposure to HFD, accompanied by carnitine palmitoyltransferase 1A (Cpt1a), acyl-CoA dehydrogenase very long chain (Acadvl) and protein kinase AMP-activated Catalytic Subunit 2 (Prkaa2) downregulation, while decreased miR-122 expression was accompanied by 1-acylglycerol-3-phosphate-O-acyltransferase (Agpat) upregulation after 56 days of HFD consumption, some of them confirmed by in vitro experiments. Despite fluctuations in TNFa and IL6 mRNA levels, molecular modulation was consistent with hepatic TG and NAFLD development.

Conclusion

Hepatic miR-370-122-Let7 miRNA modulation could be the first insult to NAFLD development, preceding changes in glycemic homeostasis and adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NAFLD:

Non-alcoholic fatty liver disease

MetSyn:

Metabolic syndrome

IR:

Insulin resistance

HFD:

High-fat diet

miRNA:

MicroRNA

DIO:

Diet-induced obesity

Gpam:

Glycerol-3-phosphate acyltransferase 1

Agpat:

1-Acylglycerol-3-phosphate-O-acyltransferase

Mogat:

2-Acylglycerol O-acyltransferase

Dgat:

Diglyceride acyltransferase

Cpt1a :

Carnitine palmitoyltransferase 1a

TG:

Triglycerides

CHOL:

Cholesterol

VLDL:

Very-low-density lipoprotein

References

  1. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y et al (2016) The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64:1577–1586. https://doi.org/10.1002/hep.28785

    Article  PubMed  Google Scholar 

  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  3. Sass DA, Chang P, Chopra KB (2005) Nonalcoholic fatty liver disease: a clinical review. Dig Dis Sci 50:171–180

    Article  PubMed  Google Scholar 

  4. Brandt A, Hernández-Arriaga A, Kehm R, Sánchez V, Jin CJ, Nier A et al (2019) Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep 9:6668. https://doi.org/10.1038/s41598-019-43228-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramalho L, da Jornada MN, Antunes LC, Hidalgo MP (2017) Metabolic disturbances due to a high-fat diet in a non-insulin-resistant animal model. Nutr Diabetes 7:e245. https://doi.org/10.1038/nutd.2016.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lizarbe B, Cherix A, Duarte JMN, Cardinaux JR, Gruetter R (2018) High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int J Obes 43(6):1295–1304. https://doi.org/10.1038/s41366-018-0224-9

    Article  CAS  Google Scholar 

  7. Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T et al (2014) SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab 19:712–721. https://doi.org/10.1016/J.CMET.2014.03.006/ATTACHMENT/C6881CF2-4415-4B4F-9E01-DBF260B9D490/MMC1.PDF

    Article  CAS  PubMed  Google Scholar 

  8. Lima VM, Liu J, Brandão BB, Lino CA, Balbino Silva CS, Ribeiro MAC et al (2021) miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism 117:154723. https://doi.org/10.1016/j.metabol.2021.154723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L et al (2021) Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med. https://doi.org/10.1111/jcmm.16376

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li J, Zhang Y, Ye Y, Li D, Liu Y, Lee E et al (2021) Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J Extracell Vesicles 10:e12055. https://doi.org/10.1002/jev2.12055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. https://doi.org/10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  12. Yin L, Keeler GD, Zhang Y, Hoffman BE, Ling C, Qing K et al (2020) AAV3-miRNA vectors for growth suppression of human hepatocellular carcinoma cells in vitro and human liver tumors in a murine xenograft model in vivo. Gene Ther. https://doi.org/10.1038/s41434-020-0140-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma ZH, Sun CX, Shi H, Fan JH, Song YG, Cong PJ et al (2020) Detection of miR-122 by fluorescence real-time PCR in blood from patients with chronic hepatitis B and C infections. Cytokine 131:155076. https://doi.org/10.1016/j.cyto.2020.155076

    Article  CAS  PubMed  Google Scholar 

  14. Wen J, Friedman JR (2012) miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Investig 122:2773. https://doi.org/10.1172/JCI63966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu G, Rui C, Chen J, Sho E, Zhan S, Yuan X et al (2017) MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via Yin Yang 1. Cell Physiol Biochem 44:1651–1664. https://doi.org/10.1159/000485765

    Article  CAS  PubMed  Google Scholar 

  16. Simino L, de Fante T, Fontana MF, Borges FO, Torsoni MA, Milanski M et al (2017) Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutr Metab 14:1–15. https://doi.org/10.1186/s12986-017-0168-4

    Article  CAS  Google Scholar 

  17. Benatti RO, Melo AM, Borges FO, Ignacio-Souza LM, Simino LA, Milanski M et al (2014) Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 122:1–11. https://doi.org/10.1017/S0007114514000579

    Article  CAS  Google Scholar 

  18. Liao CH, Wang CY, Liu KH, Liu YY, Wen MS, Yeh TS (2018) miR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract 12:570–577. https://doi.org/10.1016/j.orcp.2018.06.005

    Article  PubMed  Google Scholar 

  19. Yarushkin AA, Kazantseva YA, Kobelev VS, Pustylnyak YA, Pustylnyak VO (2017) Peroxisome proliferator-activated receptor γ activation inhibits liver growth through miR-122-mediated downregulation of cMyc. Eur J Pharmacol 797:39–44. https://doi.org/10.1016/j.ejphar.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  20. de Simino LAP, Torsoni MA, Torsoni AS (2017) Obesogenic programming of foetal hepatic metabolism by microRNAs: diet, nutrition, and fetal programming, 1st edn. Humana Press, Totowa, pp 199–210

    Google Scholar 

  21. Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI (2010) MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 51:1513–1523. https://doi.org/10.1194/jlr.M004812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simino LAP, Panzarin C, Fontana MF, de Fante T, Geraldo MV, Ignácio-Souza LM et al (2021) MicroRNA Let-7 targets AMPK and impairs hepatic lipid metabolism in offspring of maternal obese pregnancies. Sci Rep 11:8980. https://doi.org/10.1038/s41598-021-88518-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37. https://doi.org/10.1016/j.ceb.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  24. Vilela BS, Vasques ACJ, Cassani RSL, Forti EAC, Pareja JC, Tambascia MA et al (2016) The HOMA-Adiponectin (HOMA-AD) closely mirrors the HOMA-IR index in the screening of insulin resistance in the Brazilian Metabolic Syndrome Study (BRAMS). PLoS ONE. https://doi.org/10.1371/journal.pone.0158751

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fante T, de Simino LA, Reginato A, Payolla TB (2016) Diet-induced maternal obesity alters insulin signalling in male mice offspring rechallenged with a high-fat diet in adulthood. PLoS ONE. https://doi.org/10.1371/journal.pone.0160184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/s0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  27. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by Oil Red O for analyzing the metabolic status in health and disease. Nat Protoc 8:1149–1154. https://doi.org/10.1038/nprot.2013.055

    Article  CAS  PubMed  Google Scholar 

  28. Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K et al (2015) Upregulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chem Biol Drug Des 85:268–279. https://doi.org/10.1111/cbdd.12398

    Article  CAS  PubMed  Google Scholar 

  29. Figueira TR, Vercesi AE, Oliveira HC (2010) Lack of plasma albumin impairs intravascular lipolysis and explains the associated free fatty acids deficiency and hypertriglyceridemia. Lipids Health Dis 9:146. https://doi.org/10.1186/1476-511X-9-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim C, Addy C, Kusunoki J, Fitzgerald K, Kelley DE, Horton JD et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394-406.e6. https://doi.org/10.1016/j.cmet.2017.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, Zhao MF, Jiang S, Wu J, Liu J, Yuan XW et al (2020) Liver governs adipose remodelling via extracellular vesicles in response to lipid overload. Nat Commun 11:1–17. https://doi.org/10.1038/s41467-020-14450-6

    Article  CAS  Google Scholar 

  32. Williams LM, Campbell FM, Drew JE, Koch C, Hoggard N (2014) The development of diet-induced obesity and glucose intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases. PLoS ONE 9:106159. https://doi.org/10.1371/journal.pone.0106159

    Article  Google Scholar 

  33. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918. https://doi.org/10.2337/db07-0767

    Article  CAS  PubMed  Google Scholar 

  34. Lian CY, Zhai ZZ, Li ZF, Wang L (2020) High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chemico-Biol Interact 330:109199. https://doi.org/10.1016/J.CBI.2020.109199

    Article  CAS  Google Scholar 

  35. Nakamura MT, Yudell BE, Loor JJ (2014) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53:124–144. https://doi.org/10.1016/J.PLIPRES.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Hardie DG (2018) Keeping the home fires burning † : AMP-activated protein kinase. J R Soc Interface. https://doi.org/10.1098/rsif.2017.0774

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van der Heijden RA, Sheedfar F, Morrison MC, Hommelberg PPH, Kor D, Kloosterhuis NJ et al (2015) High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6J mice. Aging 7:256–268. https://doi.org/10.18632/aging.100738

    Article  PubMed  PubMed Central  Google Scholar 

  38. Watt MJ, Miotto PM, de Nardo W, Montgomery MK (2019) The liver as an endocrine organ—linking NAFLD and insulin resistance. Endocr Rev 40:1367–1393. https://doi.org/10.1210/er.2019-00034

    Article  PubMed  Google Scholar 

  39. Turner N, Kowalski GM, Leslie SJ, Risis S, Yang C, Lee-Young RS et al (2013) Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56:1638–1648. https://doi.org/10.1007/s00125-013-2913-1

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374. https://doi.org/10.1002/hep.21655

    Article  CAS  PubMed  Google Scholar 

  41. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–514. https://doi.org/10.1002/hep.27490

    Article  CAS  PubMed  Google Scholar 

  42. Muurling M, Jong MC, Mensink RP, Hornstra G, Dahlmans VEH, Pijl H et al (2002) A low-fat diet has a higher potential than energy restriction to improve high-fat diet-induced insulin resistance in mice. Metab Clin Exp 51:695–701. https://doi.org/10.1053/meta.2002.32725

    Article  CAS  PubMed  Google Scholar 

  43. Aydos LR, do Amaral LA, de Souza RS, Jacobowski AC, dos Santos EF, Macedo MLR (2019) Nonalcoholic fatty liver disease induced by high-fat diet in C57BL/6 models. Nutrients 11:3067. https://doi.org/10.3390/NU11123067

    Article  CAS  Google Scholar 

  44. Tan BL, Norhaizan ME (2019) Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients 11:2579. https://doi.org/10.3390/NU11112579

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES, Finance Code 001), National Council for Scientific and Technological Development (CNPq # 310129/2016-8), and São Paulo Research Foundation (FAPESP # 2016/18321-6). All authors declared no competitive interests and thanks to Espaço da Escrita: Pró-Reitoria de Pesquisa: UNICAMP for the language services provided.

Author information

Authors and Affiliations

Authors

Contributions

AST, LAPS, and CP carried out the study concept and design, data interpretation, and manuscript writing. CP, LASP, and MCM conducted the data acquisition and analyses. AST, MAT, LMIS, and MM did the critical review and provided funding for the study. All authors have approved the final version of the article.

Corresponding author

Correspondence to Adriana Souza Torsoni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The authors state that all procedures comply with the ethical standards of the relevant national guides on the care and use of laboratory animals set forth by the Brazilian College for Animal Experimentation (COBEA) and has been approved by the Ethical Committee for Animal Use (CEUA), Protocol 4349-1, UNICAMP. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Laboratory of Metabolic Disorders belongs to the Obesity and Comorbidities Research Center (OCRC).

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_7072_MOESM1_ESM.tiff

Supplementary file1 (TIFF 353 kb) Supplementary Fig. 1 Relative expression levels of hepatic inflammatory cytokines. Transcript levels of TNF (a) and IL-6 (b) from all groups. Values are mean ± SEM (n = 2–5). One-way ANOVA was used for multiple comparisons. Different letters indicate statistical significance between groups (p ≤ 0.05)

11033_2021_7072_MOESM2_ESM.tiff

Supplementary file2 (TIFF 142 kb) Supplementary Fig. 2 Western blotting of Cpt1 and Acadvl of hepatocytes transfected with Anti-miR-370

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panzarin, C., Simino, L.A.d.P., Mancini, M.C.S. et al. Hepatic microRNA modulation might be an early event to non-alcoholic fatty liver disease development driven by high-fat diet in male mice. Mol Biol Rep 49, 2655–2666 (2022). https://doi.org/10.1007/s11033-021-07072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07072-8

Keywords

Navigation