Skip to main content

Advertisement

Log in

Perspectives and recent progress of genome-wide association studies (GWAS) in fruits

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Earlier next-generation sequencing technologies are being vastly used to explore, administer, and investigate the gene space with accurate profiling of nucleotide variations in the germplasm.

Overview and Progress

Recently, novel advancements in high-throughput sequencing technologies allow a genotyping-by-sequencing approach that has opened up new horizons for extensive genotyping exploiting single-nucleotide-polymorphisms (SNPs). This method acts as a bridge to support and minimize a genotype to phenotype gap allowing genetic selection at the genome-wide level, named genomic selection that could facilitate the selection of traits also in the pomology sector. In addition to this, genome-wide genotyping is a prerequisite for genome-wide association studies that have been used successfully to discover the genes, which control polygenic traits including the genetic loci, associated with the trait of interest in fruit crops.

Aims and Prospects

This review article emphasizes the role of genome-wide approaches to unlock and explore the genetic potential along with the detection of SNPs affecting the phenotype of fruit crops and highlights the prospects of genome-wide association studies in fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the review of this study is included in the review article.

Abbreviations

QTLs:

Quantitative trait loci

RIL:

Recombinant inbred line

LD:

Linkage disequilibrium

GWAS:

Genome-wide association study

SNP:

Single-nucleotide polymorphism

WGS:

Whole genome sequencing

GS:

Genomic selection

NGS:

Next-generation sequencing

MAS:

Marker-assisted selection

GBS:

Genotyping-by-sequencing

References

  1. Rikkerink EHA, Oraguzie NC, Gardiner SE (2007) Prospects of association mapping in perennial horticultural crops. Association mapping in plants. Springer, New York, pp 249–269

    Chapter  Google Scholar 

  2. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060. https://doi.org/10.1093/jxb/ers105

    Article  CAS  PubMed  Google Scholar 

  3. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:11. https://doi.org/10.3835/plantgenome2008.02.0089

    Article  CAS  Google Scholar 

  4. Sukumaran S, Yu J (2014) Association mapping of genetic resources: achievements and future perspectives. In: Tuberosa R (ed) Genomics of plant genetic resources, vol 1. Springer, Dordrecht, pp 207–235

    Chapter  Google Scholar 

  5. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  Google Scholar 

  6. Kumar J, Sen GD, Gupta S et al (2017) Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep 36:1187–1213

    Article  CAS  Google Scholar 

  7. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  Google Scholar 

  8. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  Google Scholar 

  9. Buckler ES, Yu J, Holland JB, McMullen MD (2008) Genome-wide complex trait dissection through nested association mapping. Genetics 178:539–551

    Article  Google Scholar 

  10. Ibrahim AK, Zhang L, Niyitanga S et al (2020) Principles and approaches of association mapping in plant breeding. Trop Plant Biol 13:212–224

    Article  Google Scholar 

  11. Brachi B, Faure N, Horton M et al (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940. https://doi.org/10.1371/journal.pgen.1000940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108. https://doi.org/10.1038/nrg1521

    Article  CAS  PubMed  Google Scholar 

  13. Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86:6–22. https://doi.org/10.1016/j.ajhg.2009.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551. https://doi.org/10.1146/annurev-arplant-050213-035715

    Article  CAS  PubMed  Google Scholar 

  16. Khan MA, Olsen KM, Sovero V et al (2014) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7:11. https://doi.org/10.3835/plantgenome2014.04.0018

    Article  Google Scholar 

  17. Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  18. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  Google Scholar 

  19. Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 6:95–108. https://doi.org/10.1038/nature08800

    Article  CAS  Google Scholar 

  20. Hyun MK, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723. https://doi.org/10.1534/genetics.107.080101

    Article  Google Scholar 

  21. Argyris JM, Ruiz-Herrera A, Madriz-Masis P et al (2015) Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genom 16:1–14. https://doi.org/10.1186/s12864-014-1196-3

    Article  CAS  Google Scholar 

  22. Lee SH, Van Der Werf JHJ, Hayes BJ et al (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4:e1000231. https://doi.org/10.1371/journal.pgen.1000231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:1–3. https://doi.org/10.1186/gb-2010-11-4-113

    Article  Google Scholar 

  24. Myles S, Peiffer J, Brown PJ et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202. https://doi.org/10.1105/tpc.109.068437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Álvarez MF, Mosquera T, Blair MW (2014) The use of association genetics approaches in plant breeding. Plant Breed Rev 38:17–68

    Google Scholar 

  26. Covarrubias-Pazaran G, Schlautman B, Diaz-Garcia L et al (2018) Multivariate gblup improves accuracy of genomic selection for yield and fruit weight in biparental populations of vaccinium macrocarpon ait. Front Plant Sci 9:1310. https://doi.org/10.3389/fpls.2018.01310

    Article  PubMed  PubMed Central  Google Scholar 

  27. Myles S, Boyko AR, Owens CL et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535. https://doi.org/10.1073/pnas.1009363108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  Google Scholar 

  29. Kumar S, Garrick DJ, Bink MCAM et al (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genom 14:1–13. https://doi.org/10.1186/1471-2164-14-393

    Article  CAS  Google Scholar 

  30. Iwata H, Minamikawa MF, Kajiya-Kanegae H et al (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66:100–115. https://doi.org/10.1270/jsbbs.66.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang MY, Xue C, Hu H et al (2021) Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-21378-y

    Article  CAS  Google Scholar 

  32. Kishor DS, Noh Y, Song WH et al (2021) SNP marker assay and candidate gene identification for sex expression via genotyping-by-sequencing-based genome-wide associations (GWAS) analyses in Oriental melon (Cucumis melo L.var.makuwa). Sci Hortic 276:109711. https://doi.org/10.1016/j.scienta.2020.109711

    Article  CAS  Google Scholar 

  33. Noh J, Do YS, Kim GH, Choi C (2020) A genome-wide association study for the detection of genes related to apple Marssonina blotch disease resistance in apples. Sci Hortic 262:108986. https://doi.org/10.1016/j.scienta.2019.108986

    Article  CAS  Google Scholar 

  34. Zhang Y, Fan X, Li Y et al (2020) Restriction site-associated DNA sequencing reveals the molecular genetic diversity of grapevine and genes related to white rot disease. Sci Hortic 261:108907. https://doi.org/10.1016/j.scienta.2019.108907

    Article  CAS  Google Scholar 

  35. Khadgi A, Weber CA (2021) Genome-wide association study (Gwas) for examining the genomics controlling prickle production in red raspberry (Rubus idaeus L.). Agronomy 11:27. https://doi.org/10.3390/agronomy11010027

    Article  CAS  Google Scholar 

  36. Thurow LB, Gasic K, do Bassols Raseira MC et al (2020) Genome-wide SNP discovery through genotyping by sequencing, population structure, and linkage disequilibrium in Brazilian peach breeding germplasm. Tree Genet Genomes 16:1–14. https://doi.org/10.1007/s11295-019-1406-x

    Article  Google Scholar 

  37. Hou L, Chen W, Zhang Z et al (2020) Genome-wide association studies of fruit quality traits in jujube germplasm collections using genotyping-by-sequencing. Plant Genome 13:e20036. https://doi.org/10.1002/tpg2.20036

    Article  CAS  PubMed  Google Scholar 

  38. Kaya HB, Akdemir D, Lozano R et al (2019) Genome wide association study of 5 agronomic traits in olive (Olea europaea L.). Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-55338-w

    Article  CAS  Google Scholar 

  39. Guo DL, Zhao HL, Li Q et al (2019) Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res 6:1–13. https://doi.org/10.1038/s41438-018-0089-z

    Article  CAS  Google Scholar 

  40. Minamikawa MF, Takada N, Terakami S et al (2018) Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai). Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-30154-w

    Article  CAS  Google Scholar 

  41. Ferrão LFV, Benevenuto J, de Oliveira IB et al (2018) Insights into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a GWAS context. Front Ecol Evol 6:107. https://doi.org/10.3389/fevo.2018.00107

    Article  Google Scholar 

  42. Imai A, Nonaka K, Kuniga T et al (2018) Genome-wide association mapping of fruit-quality traits using genotyping-by-sequencing approach in citrus landraces, modern cultivars, and breeding lines in Japan. Tree Genet Genomes 14:1–15. https://doi.org/10.1007/s11295-018-1238-0

    Article  Google Scholar 

  43. Minamikawa MF, Nonaka K, Kaminuma E et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-05100-x

    Article  CAS  Google Scholar 

  44. Mori K, Shirasawa K, Nogata H et al (2017) Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci Rep 7:1–15. https://doi.org/10.1038/srep41124

    Article  CAS  Google Scholar 

  45. Cao K, Zhou Z, Wang Q et al (2016) Genome-wide association study of 12 agronomic traits in peach. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13246

    Article  CAS  Google Scholar 

  46. Mariette S, Wong Jun Tai F, Roch G et al (2016) Genome-wide association links candidate genes to resistance to plum pox virus in apricot (Prunus armeniaca). New Phytol 209:773–784. https://doi.org/10.1111/nph.13627

    Article  CAS  PubMed  Google Scholar 

  47. Nimmakayala P, Tomason YR, Abburi VL et al (2016) Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci 7:1437. https://doi.org/10.3389/fpls.2016.01437

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cao K, Wang L, Zhu G et al (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990. https://doi.org/10.1007/s11295-012-0477-8

    Article  Google Scholar 

  49. Kumar S, Chagné D, Bink MCAM et al (2012) Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.). PLoS One 7:e36674. https://doi.org/10.1371/journal.pone.0036674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan Y, Sahu SK, Yang T et al (2020) Dissecting the genome of star fruit (Averrhoa carambola L.). Hortic Res 7:1–10. https://doi.org/10.1038/s41438-020-0306-4

    Article  CAS  Google Scholar 

  51. Wang P, Luo Y, Huang J et al (2020) The genome evolution and domestication of tropical fruit mango. Genome Biol 21:1–17. https://doi.org/10.1186/s13059-020-01959-8

    Article  CAS  Google Scholar 

  52. VanBuren R, Wai CM, Colle M et al (2018) A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience. https://doi.org/10.1093/gigascience/giy094

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shirasawa K, Isuzugawa K, Ikenaga M et al (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508. https://doi.org/10.1093/dnares/dsx020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu Q, Chen LL, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66. https://doi.org/10.1038/ng.2472

    Article  CAS  PubMed  Google Scholar 

  55. Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. https://doi.org/10.1101/gr.144311.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. https://doi.org/10.1038/ng.2586

    Article  CAS  PubMed  Google Scholar 

  57. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116. https://doi.org/10.1038/ng.740

    Article  CAS  PubMed  Google Scholar 

  58. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  Google Scholar 

  59. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. https://doi.org/10.1038/nature06856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326. https://doi.org/10.1371/journal.pone.0001326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shikha K, Shahi JP, Vinayan MT et al (2021) Genome-wide association mapping in maize: status and prospects. 3 Biotech 11:1–10

    Article  Google Scholar 

  62. He J, Zhao X, Laroche A et al (2014) Genotyping-by-sequencing (GBS), An ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. https://doi.org/10.3389/fpls.2014.00484

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chhapekar SS, Gaur R, Kumar A, Ramchiary N (2016) Reaping the benefits of next-generation sequencing technologies for crop improvement—solanaceae. Next generation sequencing—advances, applications and challenges. InTech, London, pp 247–285

    Google Scholar 

  64. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:1–11

    Google Scholar 

  67. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9. https://doi.org/10.1111/j.1467-7652.2009.00459.x

    Article  CAS  PubMed  Google Scholar 

  68. Pereira L, Ruggieri V, Pérez S et al (2018) QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol 18:1–17. https://doi.org/10.1186/s12870-018-1537-5

    Article  CAS  Google Scholar 

  69. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–17

    Article  CAS  Google Scholar 

  70. Salazar JA, Pacheco I, Shinya P et al (2017) Genotyping by sequencing for Snp-based linkage analysis and identification of QTLs linked to fruit quality traits in japanese plum (Prunus salicina lindl.). Front Plant Sci 8:476. https://doi.org/10.3389/fpls.2017.00476

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bielenberg DG, Rauh B, Fan S et al (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10:9406. https://doi.org/10.1371/journal.pone.0139406

    Article  CAS  Google Scholar 

  72. Alonso-Blanco C, Aarts MGM, Bentsink L et al (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896. https://doi.org/10.1105/tpc.109.068114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856. https://doi.org/10.1038/nrg2207

    Article  CAS  PubMed  Google Scholar 

  74. Peng Z, Bredeson JV, Wu GA et al (2020) A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in citrus. Plant J 104:1215–1232. https://doi.org/10.1111/tpj.14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Daverdin G, Johnson-Cicalese J, Zalapa J et al (2017) Identification and mapping of fruit rot resistance QTL in American cranberry using GBS. Mol Breed 37:38. https://doi.org/10.1007/s11032-017-0639-3

    Article  CAS  Google Scholar 

  76. Pacheco I, Bassi D, Eduardo I et al (2014) Qtl mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genet Genomes 10:1223–1242. https://doi.org/10.1007/s11295-014-0756-7

    Article  Google Scholar 

  77. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073. https://doi.org/10.1007/s00122-010-1511-6

    Article  CAS  PubMed  Google Scholar 

  78. Bus VGM, Bassett HCM, Bowatte D et al (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487. https://doi.org/10.1007/s11295-009-0265-2

    Article  Google Scholar 

  79. Pierantoni L, Dondini L, Cho KH et al (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311. https://doi.org/10.1007/s11295-006-0070-0

    Article  Google Scholar 

  80. Soriano JM, Vera-Ruiz EM, Vilanova S et al (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402. https://doi.org/10.1007/s11295-007-0118-9

    Article  Google Scholar 

  81. Cappai F, Amadeu RR, Benevenuto J et al (2020) High-resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry. Front Plant Sci 11:1767. https://doi.org/10.3389/fpls.2020.562171

    Article  Google Scholar 

  82. Asins MJ, Raga MV, Torrent D et al (2020) QTL and candidate gene analyses of rootstock-mediated tomato fruit yield and quality traits under low iron stress. Euphytica 216:1–19. https://doi.org/10.1007/s10681-020-02599-6

    Article  CAS  Google Scholar 

  83. Yamamoto T, Terakami S, Takada N et al (2015) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361. https://doi.org/10.1270/jsbbs.64.351

    Article  CAS  Google Scholar 

  84. Kunihisa M, Moriya S, Abe K et al (2014) Identification of QTLs for fruit quality traits in Japanese apples QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251. https://doi.org/10.1270/jsbbs.64.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Correa J, Mamani M, Muñoz-Espinoza C et al (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162. https://doi.org/10.1007/s00122-014-2286-y

    Article  CAS  PubMed  Google Scholar 

  86. Martínez-García PJ, Parfitt DE, Ogundiwin EA et al (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36. https://doi.org/10.1007/s11295-012-0522-7

    Article  Google Scholar 

  87. Isik F, Kumar S, Martínez-García PJ et al (2015) Acceleration of forest and fruit tree domestication by genomic selection. Adv Bot Res 74:93–124. https://doi.org/10.1016/bs.abr.2015.05.002

    Article  Google Scholar 

  88. Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7:747–758. https://doi.org/10.1007/s11295-011-0371-9

    Article  Google Scholar 

  89. Viana AP, de Resende MDV, Riaz S, Walker MA (2016) Genome selection in fruit breeding: application to table grapes. Sci Agric 73:142–149. https://doi.org/10.1590/0103-9016-2014-0323

    Article  Google Scholar 

  90. Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255. https://doi.org/10.1007/s11295-010-0328-4

    Article  Google Scholar 

  91. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601. https://doi.org/10.1016/j.tplants.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  92. Alvarez D, Cerda-Bennasser P, Stowe E et al (2021) Fruit crops in the era of genome editing: closing the regulatory gap. Plant Cell Rep 1:1–16

    Google Scholar 

  93. Biscarini F, Nazzicari N, Bink M et al (2017) Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genom 18:1–15. https://doi.org/10.1186/s12864-017-3781-8

    Article  Google Scholar 

  94. Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191. https://doi.org/10.1071/CP13363

    Article  Google Scholar 

  95. O’Connor K, Hayes B, Topp B (2018) Prospects for increasing yield in macadamia using component traits and genomics. Tree Genet Genomes 14:1–14. https://doi.org/10.1007/s11295-017-1221-1

    Article  Google Scholar 

  96. Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66:100–115. https://doi.org/10.1270/jsbbs.66.148

    Article  CAS  Google Scholar 

  97. O’Connor KM, Hayes BJ, Hardner CM et al (2021) Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population. BMC Genom 22:1–12

    Article  Google Scholar 

  98. Tuberosa R, Frison E, Graner A (2014) Genomics of plant genetic resources. Genom Plant Genet Resour Springer 11:1–11. https://doi.org/10.1007/978-94-007-7575-6

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all the contributors for their endless support during the write-up of the manuscript.

Funding

There is no external funding received for the article.

Author information

Authors and Affiliations

Authors

Contributions

YAK conceived the need for this review and suggested it to GZ who initiated the process and did a good part of the review work.GZ, DD and AK assisted in the write-up, and YK, GZ, and TG prepared the framework for the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ghassan Zahid.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors informed consent.

Consent to publish

All authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring related to the accuracy or integrity of any part of the work is appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, G., Aka Kaçar, Y., Dönmez, D. et al. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. Mol Biol Rep 49, 5341–5352 (2022). https://doi.org/10.1007/s11033-021-07055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07055-9

Keywords

Profiles

  1. Yıldız Aka Kaçar