Skip to main content
Log in

Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems.

Methods and results

The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001).

Conclusions

This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on request.

Code availability

Not applicable' for that section.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

NMDARs:

N-methyl d-aspartate type glutamate receptors

SSCs:

Spermatogonia Stem Cells

DTM:

Decellularized testicular matrix

PLZF:

Promyelocytic leukemia zinc finger

GFRα1:

GDNF family receptor alpha-1

qRT-PCR:

Quantitative Reverse Transcription Polymerase Chain Reaction:

ICC:

Immunocytochemistry

SEM:

Scanning electron microscopy

References

  1. Movassagh SA, Movassagh SA, Dehkordi MB, Pourmand G, Gholami K, Talebi A et al (2020) Isolation, identification and differentiation of human spermatogonial cells on three-dimensional decellularized sheep testis. Acta Histochem 122(8):e151623

    Article  Google Scholar 

  2. AbuMadighem A, Solomon R, Stepanovsky A, Kapelushnik J, Shi Q, Meese E et al (2018) Development of spermatogenesis in vitro in three-dimensional culture from spermatogonial cells of busulfan-treated immature mice. Int J Mol Sci 19(12):3804

    Article  PubMed Central  Google Scholar 

  3. Sanjo H, Komeya M, Sato T, Abe T, Katagiri K, Yamanaka H et al (2018) In vitro mouse spermatogenesis with an organ culture method in chemically defined medium. PLoS One 13(2):e0192884

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huleihel M, Nourashrafeddin S, Plant TM (2015) Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl 17(6):972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gholami K, Pourmand G, Koruji M, Ashouri S, Abbasi M (2018) Organ culture of seminiferous tubules using a modified soft agar culture system. Stem Cell Res Ther 9(1):249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baert Y, Rombaut C, Goossens E (2017) Scaffold-based and scaffold-free testicular organoids from primary human testicular cells. InOrganoids Humana, New York

    Book  Google Scholar 

  7. Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K et al (2019) Human testis extracellular matrix enhances human spermatogonial stem cell survival in vitro. Tissue Eng Part A 25(7–8):663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X-T, Li C, Peng X-P, Guo J, Yue S-J, Liu W et al (2017) An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 7:44120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee A, Anderson AR, Barnett AC, Chan A, Pow DV (2011) Expression of multiple glutamate transporter splice variants in the rodent testis. Asian J Androl 13(2):254

    Article  CAS  PubMed  Google Scholar 

  10. Santillo A, Falvo S, Chieffi P, Burrone L, Chieffi Baccari G, Longobardi S et al (2014) D-aspartate affects NMDA receptor-extracellular signal-regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology 81(5):744–751

    Article  CAS  PubMed  Google Scholar 

  11. Storto M, Sallese M, Salvatore L, Poulet R, Condorelli D, Dell’Albani P et al (2001) Erratum: Expression of metabotropic glutamate receptors in the rat and human testis. J Endocrinol 170(2):71–78

    Article  CAS  PubMed  Google Scholar 

  12. Di Fiore MM, Santillo A, Falvo S, Longobardi S, Chieffi Baccari G (2016) Molecular mechanisms elicited by D-aspartate in Leydig cells and spermatogonia. Int J Mol Sci 17(7):1127

    Article  PubMed Central  Google Scholar 

  13. Santillo A, Falvo S, Chieffi P, Di Fiore MM, Senese R, Chieffi Baccari G (2016) D-Aspartate induces proliferative pathways in spermatogonial GC-1 cells. J Cell Physiol 231:490–495

    Article  CAS  PubMed  Google Scholar 

  14. Falvo E, Tremante E, Arcovito A, Papi M, Elad N, Boffi A et al (2016) Improved doxorubicin encapsulation and pharmacokinetics of ferritin–fusion protein nanocarriers bearing proline, serine, and alanine elements. Biomacromol 17:514–522

    Article  CAS  Google Scholar 

  15. D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A (2005) Occurrence of D-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril 84(5):1444–1449

    Article  PubMed  Google Scholar 

  16. Sakai K, Homma H, Lee J-A, Fukushima T, Santa T, Tashiro K et al (1998) Localization ofd-Aspartic Acid in Elongate Spermatids in Rat Testis. Arch Biochem Biophys 351(1):96–105

    Article  CAS  PubMed  Google Scholar 

  17. Modirshanechi G, Eslampour MA, Abdolmaleki Z (2020) Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 52(11):e13764

    Article  CAS  PubMed  Google Scholar 

  18. Ta M, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65(1):454–458

    Google Scholar 

  19. Momeni HR, Etemadi T, Alyasin A, Eskandari N (2021) A novel role for involvement of N-methyl-D-aspartate (NMDA) glutamate receptors in sperm acrosome reaction. Andrologia 202153(10):e14203

    Google Scholar 

  20. Turkmen R, Akosman MS, Demirel HH (2019) Protective effect of N-acetylcysteine on MK-801-induced testicular oxidative stress in mice. Biomed Pharmacother 109:1988–1993

    Article  CAS  PubMed  Google Scholar 

  21. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69(2):612–616

    Article  CAS  PubMed  Google Scholar 

  22. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, Hovingh S, de Reijke TM, de la Rosette JJ, van der Veen F, de Rooij DG (2009) Propagation of human spermatogonial stem cells in vitro. JAMA 302(19):2127–2134

    Article  CAS  PubMed  Google Scholar 

  23. Mahaldashtian M, Naghdi M, Ghorbanian MT, Makoolati Z, Movahedin M, Mohamadi SM (2016) In vitro effects of date palm (Phoenix dactylifera L.) pollen on colonization of neonate mouse spermatogonial stem cells. J Ethnopharmacol 186:362–368

    Article  PubMed  Google Scholar 

  24. Majidi Gharenaz N, Movahedin M, Mazaheri Z (2020) Three-dimensional culture of mouse spermatogonial stem cells using a decellularised testicular scaffold. Cell J 21(4):410–418

    PubMed  Google Scholar 

  25. Daryabari S, Kajbafzadeh A-M, Fendereski K, Ghorbani F, Dehnavi M, Rostami M et al (2019) Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet 36:1211–1223

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zawko SA, Suri S, Truong Q, Schmidt CE (2009) Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels. Acta Biomater 5(1):14–22

    Article  CAS  PubMed  Google Scholar 

  27. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F (2020) Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 66(3):202–215

    Article  CAS  PubMed  Google Scholar 

  29. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z et al (2020) A testis-derived hydrogel as an efficient feeder-free culture platform to promote mouse spermatogonial stem cell proliferation and differentiation. Front Cell Dev Biol 8:250

    Article  PubMed  PubMed Central  Google Scholar 

  31. Topraggaleh TR, Valojerdi MR, Montazeri L, Baharvand H (2019) A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 7(4):1422–1436

    Article  Google Scholar 

  32. Spang MT, Christman KL (2018) Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater 68:1–14

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Li X, Wu Y, Du P, Sun L, Yu Z et al (2020) Preparation of PU/fibrin vascular scaffold with good biomechanical properties and evaluation of its performance in vitro and in vivo. Int J Nanomedicine 15:8697–8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santillo A, Falvo S, Di Fiore MM, Di Giacomo RF, Chieffi P, Usiello A et al (2019) AMPA receptor expression in mouse testis and spermatogonial GC-1 cells: a study on its regulation by excitatory amino acids. J Cell Biochem 120(7):11044–11055

    Article  CAS  Google Scholar 

  35. Vogiatzi P, Giordano A (2007) Following the tracks of AKT1 gene. Cancer Biol Ther 69(10):1521–1524

    Article  Google Scholar 

  36. Chieffi P, Chieffi S (2013) Molecular biomarkers as potential targets for therapeutic strategies in human testicular germ cell tumors: an overview. J Cell Physiol 228(8):1641–1646

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Zhang K, Li G, Yan S, Cui L, Yin J (2018) Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly(l-glutamic acid)-based shape memory scaffolds. Biomater Sci 6(10):2738–2749

    Article  CAS  PubMed  Google Scholar 

  38. Li B, He X, Zhuang M, Niu B, Wu C, Mu H et al (2018) Melatonin ameliorates busulfan-induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxid Redox Signal 28(5):385–400

    Article  CAS  PubMed  Google Scholar 

  39. Hu JC-C, Zhang C, Sun X, Yang Y, Cao X, Ryu O et al (2000) Characterization of the mouse and human PRSS17 genes, their relationship to other serine proteases, and the expression of PRSS17 in developing mouse incisors. Gene 251(1):1–8

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki C, Tanigawa M, Tanaka H, Horiike K, Kanekatsu R, Tojo M et al (2014) Effect of d-serine on spermatogenesis and extracellular signal-regulated protein kinase (ERK) phosphorylation in the testis of the silkworm, Bombyx mori. J Insect Physiol 67:97–104

    Article  CAS  PubMed  Google Scholar 

  41. Godet M, Sabido O, Gilleron J, Durand P (2008) Meiotic progression of rat spermatocytes requires mitogen-activated protein kinases of Sertoli cells and close contacts between the germ cells and the Sertoli cells. Dev Biol 315(1):173–188

    Article  CAS  PubMed  Google Scholar 

  42. Huang X, Kong H, Tang M, Lu M, Ding JH, Hu G (2012) D-Serine regulates proliferation and neuronal differentiation of neural stem cells from postnatal mouse forebrain. CNS Neurosci Ther 18(1):4–13

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parlaktas BS, Ozyurt B, Ozyurt H, Tunc AT, Akbas A (2008) Levels of oxidative stress parameters and the protective effects of melatonin in psychosis model rat testis. Asian J Androl 10(2):259–265

    Article  CAS  PubMed  Google Scholar 

  44. Saleh SY, Sawiress FA, Tony MA, Hassanin AM, Khattab MA, Bakeer MR (2015) Protective role of some feed additives against dizocelpine induced oxidative stress in testes of rabbit bucks. J Agric Sci 7(10):239

    Google Scholar 

  45. Zhang X, Wang L, Zhang X, Ren L, Shi W, Tian Y et al (2017) The use of KnockOut serum replacement (KSR) in three dimensional rat testicular cells co-culture model: an improved male reproductive toxicity testing system. Food Chem Toxicol 106:487–495

    Article  CAS  PubMed  Google Scholar 

  46. Ozyurt B, Ozyurt H, Akpolat N, Erdogan H, Sarsilmaz M (2007) Oxidative stress in prefrontal cortex of rat exposed to MK-801 and protective effects of CAPE. Prog Neuropsychopharmacol Biol Psychiatry 31(4):832–838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the research deputy of the University of Tabriz, Tabriz, Iran. This manuscript is written based on the Ph.D thesis of Amirhessam Eskafi Noghani

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Amirhessam Eskafi Noghani: Performed the research and prepared manuscript. Reza Asadpour: Contributed to study design, wrote the draft, and interpreted the data. Adel Saberivand: Contributed in performing study and revised the manuscript. Zohreh Mazaheri: Contributed in the construction of 3D culture system, interpret the data, Gholamreza Hamidian: Revise the manuscript and interpret histology data; all authors approved the submitted version.

Corresponding author

Correspondence to Reza Asadpour.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare which are relevant to the content of this article.

Ethical approval

This study was approved by Ethics Committee of University of Tabriz (Code No: IR.TABRIZU.REC.1399.045), and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Not applicable' for that section.

Consent for publication

Not applicable' for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noghani, A.E., Asadpour, R., Saberivand, A. et al. Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems. Mol Biol Rep 49, 2197–2207 (2022). https://doi.org/10.1007/s11033-021-07041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07041-1

Keyword

Navigation