Skip to main content
Log in

Genome survey of Misgurnus anguillicaudatus to identify genomic information, simple sequence repeat (SSR) markers, and mitochondrial genome

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The dojo loach Misgurnus anguillicaudatus is an important economic species in Asia because of its nutritional value and broad environmental adaptability. Despite its economic importance, genomic data for M. anguillicaudatus is currently unavailable.

Methods and results

In the present study, we conducted a genome survey of M. anguillicaudatus using next-generation sequencing technology. Its genome size was estimated to be 1105.97 Mb by using K-mer analysis, and its heterozygosity ratio, repeat sequence content, GC content were 1.45%, 58.98%, and 38.03%, respectively. A total of 376,357 microsatellite motifs were identified, and mononucleotides, with a frequency of 42.57%, were the most frequently repeated motifs, followed by 40.83% dinucleotide, 7.49% trinucleotide, 8.09% tetranucleotide, and 0.91% pentanucleotide motifs. The AC/GT, AAT/ATT, and ACAG/CTGT repeats were the most abundant motifs among dinucleotide, trinucleotide, and tetranucleotide motifs, respectively. Besides, the complete mitochondrial genome was sequenced. Based on the Maximum Likelihood and Bayesian inference analyses, M. anguillicaudatus yingde in this study was the “introgressed” mitochondrial type. Seventy microsatellite loci were randomly selected from detected SSR loci to test polymorphic, of which, 20 microsatellite loci were assessed in 30 individuals from a wild population. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) per locus ranged from 7 to 19, 0.400 to 0.933, and 0.752 to 0.938, respectively. All 20 loci were highly informative (PIC > 0.700). Eight loci deviated from Hardy–Weinberg equilibrium after Bonferroni correction (P < 0.05).

Conclusions

This is the first report of genome survey sequencing in M. anguillicaudatus, genome information, mitochondrial genome, and microsatellite markers will be valuable for further studies on population genetic analysis, natural resource conservation, and molecular marker-assisted selective breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the article and its supplementary information.

References

  1. Zhou W, Hu YY, Sui ZH et al (2013) Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing. PloS One 8(7):e69909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu X, Luan S, Kong J et al (2017) Genome-wide mining, characterization, and development of microsatellite markers in Marsupenaeus japonicus by genome survey sequencing. Chin J Oceanol Limn 35(1):203–214

    Article  CAS  Google Scholar 

  3. Shi LL, Yi SK, Li YK (2018) Genome survey sequencing of red swamp crayfish Procambarus clarkii. Mol Biol Rep 45(5):799–806

    Article  CAS  PubMed  Google Scholar 

  4. Song H, Zhang YX, Yang MJ et al (2018) Genome survey on invasive veined rapa whelk (Rapana venosa) and development of microsatellite loci on large scale. J Genet 97:e79–e86

    Article  PubMed  Google Scholar 

  5. Li ZY, Tian CX, Huang Y et al (2019) A first insight into a draft genome of silver sillago (Sillago sihama) via genome survey sequencing. Animals 9(10):1–8

    Article  Google Scholar 

  6. Romana-Eguia MRR, Ikeda M, Basiao ZU et al (2004) Genetic diversity in farmed Asian Nile and red hybrid tilapia stocks evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture 236(1):131–150

    Article  CAS  Google Scholar 

  7. O’Connell M, Wright JM (1997) Microsatellite DNA in fishes. Rev Fish Biol Fisher 7(3):331–363

    Article  Google Scholar 

  8. Andersson L, Haley C, Ellegren H et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263(5154):1771–1774

    Article  CAS  PubMed  Google Scholar 

  9. Fang S, Wu R, Shi X et al (2020) Genome survey and identification of polymorphic microsatellites provide genomic information and molecular markers for the red crab Charybdis feriatus (Linnaeus, 1758) (Decapoda: Brachyura: Portunidae). J Crustacean Biol 40(1):76–81

    Article  Google Scholar 

  10. Qiu B, Fang S, Ikhwanuddin M et al (2020) Genome survey and development of polymorphic microsatellite loci for Sillago sihama based on Illumina sequencing technology. Mol Biol Rep 47(4):3011–3017

    Article  CAS  PubMed  Google Scholar 

  11. Zhou YL, Wu JJ, Wang ZW et al (2021) Microsatellite polymorphism and genetic differentiation of different populations screened from genome survey sequencing in red-tail catfish (Hemibagrus wyckioides). Aquac Rep 19:241–250

    Google Scholar 

  12. Zhong J, Yi S, Ma L et al (1901) (2019) Evolution and phylogeography analysis of diploid and polyploid Misgurnus anguillicaudatus populations across China. Proc Royal Soc B 286:20190076

    Article  Google Scholar 

  13. Li YJ, Yin J, Wang JB et al (2008) A study on the distribution of polyploid loaches in China. Nippon Suisan Gakk 74(2):177–182

    Article  Google Scholar 

  14. Huang SQ, Cao XJ, Tian XC et al (2016) High-Throughput sequencing identifies microRNAs from posterior intestine of loach (Misgurnus anguillicaudatus) and their response to intestinal air-breathing inhibition. PloS One 11(2):e0149123

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng B, Yi SV, Zhang MM et al (2018) Development of novel EST-SSR markers for ploidy identification based on de novo transcriptome assembly for Misgurnus anguillicaudatus. PloS One 13(4):e0195829

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu BH, Shi YJ, Yuan JY et al (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant Biol 35:62–67

    Google Scholar 

  17. Luo RB, Liu BH, Xie YL et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):1–6

    Article  Google Scholar 

  18. Li RQ, Yu C, Li YR et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  20. Lanfear R, Calcott B, Ho SYW et al (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  21. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234

    Article  CAS  PubMed  Google Scholar 

  22. Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui L, Abbas K, Yu Y et al (2013) First record of the natural occurrence of pentaploid loach, Misgurnus anguillicaudatus in Hubei Province, China. Folia Zool 62(1):14–18

    Article  Google Scholar 

  24. Abbas K, Li MY, Wang WM et al (2009) First record of the natural occurrence of hexaploid loach Misgurnus anguillicaudatus in Hubei Province, China. J Fish Biol 75(2):435–441

    Article  CAS  PubMed  Google Scholar 

  25. Arai K (2003) Genetics of the loach, Misgurnus anguillicaudatus: recent progress and perspective. Folia Biol 51:107–117

    Google Scholar 

  26. Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu P, Zhang XF, Wang XM et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219

    Article  CAS  PubMed  Google Scholar 

  28. Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5(1):3657–3667

    Article  PubMed  Google Scholar 

  29. Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719

    Article  CAS  PubMed  Google Scholar 

  30. Chen BJ, Sun ZC, Lou FR et al (2020) Genomic characteristics and profile of microsatellite primers for Acanthogobius ommaturus by genome survey sequencing. Bio Rep 40:BSR20201295

    Article  CAS  Google Scholar 

  31. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang YQ, Jiang DN, Li M et al (2019) Genome survey of male and female spotted scat (Scatophagus argus). Animals 9(12):1–17

    Article  Google Scholar 

  33. Xu SY, Zhang H, Gao TX (2020) Comprehensive whole genome survey analyses of male and female brown-spotted flathead fish Platycephalus sp. 1. Genomics 112(6):4742–4748

    Article  CAS  PubMed  Google Scholar 

  34. Cheung M, Down TA, Latorre I et al (2011) Systematic bias in high-throughput sequencing data and its correction by BEADS. Nucleic Acids Res 39(15):e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aird D, Ross MG, Chen WS et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12(2):1–14

    Article  Google Scholar 

  36. Lei Y, Zhou Y, Price M et al (2021) Genome-wide characterization of microsatellite DNA in fishes: survey and analysis of their abundance and frequency in genome-specific regions. BMC Genom 22(1):421–421

    Article  CAS  Google Scholar 

  37. Schorderet DF, Gartler SM (1992) Analysis of CpG suppression in methylated and nonmethylated species. PNAS 89(3):957–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ji D, Sun Z, Song N et al (2020) The complete mitochondrial genome of Jaydia lineata (Perciformes, Apogonidae) obtained by next-generation sequencing. Mitochondrial DNA B 5(3):2507–2508

    Article  Google Scholar 

  39. He SP, Gu X, Mayden RL et al (2008) Phylogenetic position of the enigmatic genus Psilorhynchus (Ostariophysi: Cypriniformes): evidence from the mitochondrial genome. Mol Phylogenet Evol 47(1):419–425

    Article  PubMed  Google Scholar 

  40. Cui Z, Zhou X, Yu Y et al (2014) Comparative analysis of mitochondrial genomes in distinct nuclear ploidy loach Misgurnus anguillicaudatus and its implications for polyploidy evolution. PloS One 9(3):e92033

    Article  Google Scholar 

  41. Zeng LG, Wang JH, Sheng JQ et al (2012) Molecular characteristics of mitochondrial DNA and phylogenetic analysis of the loach (Misgurnus anguillicaudatus) from the Poyang Lake. Mitochondr DNA 23(3):187–200

    Article  CAS  Google Scholar 

  42. Lee SY, Bang IC, Nam YK (2018) Complete mitochondrial genome of albino cyprinid loach, Misgurnus anguillicaudatus (Cypriniformes: Cobitidae). Conserv Genet Resour 10:507–510

    Article  Google Scholar 

  43. Kitagawa T, Fujii Y, Koizumi N (2011) Origin of the two major distinct mtDNA clades of the Japanese population of the oriental weather loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). Folia Zool 60(4):343–349

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by China Agriculture Research System of MOF and MARA (CARS-46) and the National Key R&D Program of China (No. 2018YFD0901201).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: GC ML. Performed the experiments, analyzed the genetic data: GH. Contributed reagents/materials/analysis tools: JC CC MW ZL FG MY. Wrote the paper: GH ML. All authors read, revised, and approved the manuscript.

Corresponding authors

Correspondence to Gang Chen or Maixin Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All experimental procedures for loach handling were approved by the Animal Care and Ethics Committee of the Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences.

Consent to participate

This study was conducted at Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences. The institution and all authors agreed to participate in this research.

Consent to publish

The Author confirms: that the work described has not been published before; that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors if any; that its publication has been approved explicitly by the responsible authorities at the institution where the work is carried out. The authors agree to publication in the journal Molecular Biology Reports.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143 KB)

Supplementary file2 (PDF 1718 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Cao, J., Chen, C. et al. Genome survey of Misgurnus anguillicaudatus to identify genomic information, simple sequence repeat (SSR) markers, and mitochondrial genome. Mol Biol Rep 49, 2185–2196 (2022). https://doi.org/10.1007/s11033-021-07037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07037-x

Keywords

Navigation