Skip to main content
Log in

Development and performance evaluation of TaqMan real-time fluorescence quantitative methylation specific PCR for detecting methylation level of PER2

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

PER2 gene methylation is closely related to the occurrence and progress of some cancers, but there is no method to quantitatively detect PER2 methylation in conventional laboratories. So, we established a TaqMan real-time fluorescence quantitative methylation specific PCR (TaqMan real-time FQ-MSP) assay and use it for quantitative detection of PER2 methylation in leukemia patients.

Methods

According to the PER2 sequence searched by GenBank, a CpG sequence enrichment region of the PER2 gene promoter was selected, and the methylated and unmethylated target sequences were designed according to the law of bisulfite conversion of DNA to construct PER2 methylation positive and negative reference materials. Specific primers and probe were designed. The reference materials were continuously diluted into gradient samples by tenfold ratio to evaluate the analytical sensitivity, specificity, accuracy and reproducibility of the method, and the analytical sensitivity of TaqMan real-time FQ-MSP assay was compared with that of the conventional MSP assay. At the same time, the new-established TaqMan real-time FQ-MSP assay and the conventional MSP assay were used to detect the PER2 methylation level of 81 patients with leukemia, and the samples with inconsistent detection results of the two assays were sent to pyromethylation sequencing to evaluate the clinical detection performance.

Results

The minimum detection limit of TaqMan real-time FQ-MSP assay for detecting PER2 methylation level established in this study was 6 copies/uL, and the coefficient of variation(CV) of intra-assay and inter-assay was less than 3%. Compared with the conventional MSP assay, it has higher analytical sensitivity. For the samples with inconsistent detection results, the results of pyrosequencing and TaqMan real-time FQ-MSP assay are consistent.

Conclusion

TaqMan real-time FQ-MSP assay of PER2 methylation established in this study has high detection performance and can be used for the detection of clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MSP:

Methylation specific PCR

TaqMan real-time FQ-MSP:

TaqMan real-time fluorescence quantitative MSP

PER2:

Period 2

CNS:

Central nervous system

SCN:

Suprachiasmatic nucleus

AML:

Acute myeloid leukemia

CML:

Chronic myeloid leukemia

BSP:

Bisulfite sequencing

MS-HRM:

Methylation-sensitive high-resolution melting

References

  1. Shaashua L, Mayer S, Lior C et al (2020) Stromal expression of the core clock gene is essential for tumor initiation and metastatic colonization. Fronti Cell Develop Biol 8:587697. https://doi.org/10.3389/fcell.2020.587697

    Article  Google Scholar 

  2. Katoku-Kikyo N, Paatela E, Houtz DL et al (2021) Per1/Per2-Igf2 axis-mediated circadian regulation of myogenic differentiation. J Cell Biol. https://doi.org/10.1083/jcb.202101057

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yu C-W, Cheng K-C, Chen L-C et al (1861) (2018) Pro-inflammatory cytokines IL-6 and CCL2 suppress expression of circadian gene Period2 in mammary epithelial cells. Biochim Biophys Acta 11:1007–1017. https://doi.org/10.1016/j.bbagrm.2018.09.003

    Article  CAS  Google Scholar 

  4. Wang Z, Li F, Wei M et al (2020) Circadian clock protein PERIOD2 Suppresses the PI3K/Akt pathway and promotes cisplatin sensitivity in ovarian cancer. Cancer Manag Res 12:11897–11908. https://doi.org/10.2147/CMAR.S278903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dagmura H, Yiğit S, Nursal AF et al (2021) Possible association of variable number tandem repeat polymorphism variants with susceptibility and clinical characteristics in pancreatic cancer. Genet Test Mol Biomarkers 25(2):124–130. https://doi.org/10.1089/gtmb.2020.0179

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Ao Y, Yang K et al (2016) Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma. Oncol Rep 35(6):3387–3394. https://doi.org/10.3892/or.2016.4724

    Article  CAS  PubMed  Google Scholar 

  7. Mteyrek A, Filipski E, Guettier C et al (2017) Critical cholangiocarcinogenesis control by cryptochrome clock genes. Int J Cancer 140(11):2473–2483. https://doi.org/10.1002/ijc.30663

    Article  CAS  PubMed  Google Scholar 

  8. Hasakova K, Reis R, Vician M et al (2019) Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS ONE 14(10):e0224396. https://doi.org/10.1371/journal.pone.0224396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang N, Mi M, Wei X et al (2020) Circadian clock gene Period2 suppresses human chronic myeloid leukemia cell proliferation. Exp Ther Med 20(6):147. https://doi.org/10.3892/etm.2020.9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin L, Wang Y, Bian S et al (2021) A circular RNA derived from PLXNB2 as a valuable predictor of the prognosis of patients with acute myeloid leukaemia. J Transl Med 19(1):123. https://doi.org/10.1186/s12967-021-02793-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gery S, Gombart AF, Yi WS et al (2005) Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 106(8):2827–2836. https://doi.org/10.1182/blood-2005-01-0358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thoennissen NH, Thoennissen GB, Abbassi S et al (2012) Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leuk Lymphoma 53(8):1577–1585. https://doi.org/10.3109/10428194.2012.658792

    Article  CAS  PubMed  Google Scholar 

  13. Yang MY, Chang JG, Lin PM et al (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97(12):1298–1307. https://doi.org/10.1111/j.1349-7006.2006.00331.x

    Article  CAS  PubMed  Google Scholar 

  14. Unnikrishnan A, Freeman WM, Jackson J et al (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Ther 195:172–185. https://doi.org/10.1016/j.pharmthera.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  15. Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD et al (2019) Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 14(12):1164–1176. https://doi.org/10.1080/15592294.2019.1640546

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aure MR, Fleischer T, Bjørklund S et al (2021) Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of breast cancer. Genome medicine 13(1):72. https://doi.org/10.1186/s13073-021-00880-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Wong MPM, Ng RK (2019) Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. https://doi.org/10.3390/ijms20184576

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chim CS, Liang R, Tam CY et al (2001) Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 19(7):2033–2040

    Article  CAS  Google Scholar 

  19. Yasunaga J-I, Taniguchi Y, Nosaka K et al (2004) Identification of aberrantly methylated genes in association with adult T-cell leukemia. Can Res 64(17):6002–6009

    Article  CAS  Google Scholar 

  20. Cai SF, Levine RL (2019) Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol 56(2):84–89. https://doi.org/10.1053/j.seminhematol.2018.08.001

    Article  PubMed  Google Scholar 

  21. Zhang MY, Wang LQ, Chim CS (2021) miR-1250-5p is a novel tumor suppressive intronic miRNA hypermethylated in non-Hodgkin’s lymphoma: novel targets with impact on ERK signaling and cell migration. Cell Commun Signal 19(1):62. https://doi.org/10.1186/s12964-021-00707-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Yang L, Li Y et al (2021) Aberrant hypermethylation induced downregulation of antisense lncRNA STXBP5-AS1 and its sense gene STXBP5 correlate with tumorigenesis of glioma. Life Sci 278:119590. https://doi.org/10.1016/j.lfs.2021.119590

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi N, Shinagawa S, Nagata T et al (2021) Blood DNA methylation levels in the WNT5A gene promoter region: a potential biomarker for agitation in subjects with dementia. J Alzheimer’s Disease. https://doi.org/10.3233/JAD-210078

    Article  Google Scholar 

  24. Huh I, Wu X, Park T et al (2019) Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Brief Bioinform 20(1):33–46. https://doi.org/10.1093/bib/bbx077

    Article  CAS  PubMed  Google Scholar 

  25. Akika R, Awada Z, Mogharbil N et al (2017) Region of interest methylation analysis: a comparison of MSP with MS-HRM and direct BSP. Mol Biol Rep 44(3):295–305. https://doi.org/10.1007/s11033-017-4110-7

    Article  CAS  PubMed  Google Scholar 

  26. Gangisetty O, Sinha R, Sarkar DK (2019) Hypermethylation of Proopiomelanocortin and Period 2 Genes in Blood Are Associated with Greater Subjective and Behavioral Motivation for Alcohol in Humans. Alcohol Clin Exp Res 43(2):212–220. https://doi.org/10.1111/acer.13932

    Article  CAS  PubMed  Google Scholar 

  27. Milagro FI, Gomez-Abellan P, Campion J et al (2012) CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 29(9):1180–1194. https://doi.org/10.3109/07420528.2012.719967

    Article  CAS  PubMed  Google Scholar 

  28. Peng H, Zhu Y, Goldberg J et al (2019) DNA Methylation of Five Core Circadian Genes Jointly Contributes to Glucose Metabolism: A Gene-Set Analysis in Monozygotic Twins. Front Genet 10:329. https://doi.org/10.3389/fgene.2019.00329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan W, Chen X, Li C et al (2014) The analysis of deregulated expression and methylation of the PER2 genes in gliomas. J Cancer Res Ther 10(3):636–640. https://doi.org/10.4103/0973-1482.138202

    Article  PubMed  Google Scholar 

  30. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  31. Fong J, Gardner JR, Andrews JM et al (2021) Determining subpopulation methylation profiles from bisulfite sequencing data of heterogeneous samples using DXM. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab516

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hernández-Rosas F, Hernández-Oliveras A, Flores-Peredo L et al (2018) Histone deacetylase inhibitors induce the expression of tumor suppressor genes Per1 and Per2 in human gastric cancer cells. Oncol Lett 16(2):1981–1990. https://doi.org/10.3892/ol.2018.8851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shih M-C, Yeh K-T, Tang K-P et al (2006) Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol Carcinog 45(10):732–740

    Article  CAS  Google Scholar 

  34. Kuo S-J, Chen S-T, Yeh K-T et al (2009) Disturbance of circadian gene expression in breast cancer. Virchows Arch 454(4):467–474. https://doi.org/10.1007/s00428-009-0761-7

    Article  CAS  PubMed  Google Scholar 

  35. Caiado F, Maia-Silva D, Jardim C et al (2019) Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nat Commun 10(1):4986. https://doi.org/10.1038/s41467-019-12983-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hernández HG, Tse MY, Pang SC et al (2013) Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 55(4):181–197. https://doi.org/10.2144/000114087

    Article  CAS  PubMed  Google Scholar 

  37. Lima A, Widen R, Vestal G et al (2019) A TaqMan probe-based real-Time PCR assay for the rapid identification of the emerging multidrug-resistant pathogen Candida auris on the BD max system. J Clini Microbiology. https://doi.org/10.1128/JCM.01604-18

    Article  Google Scholar 

  38. Liu B, Du Q, Chen L et al (2016) CpG methylation patterns of human mitochondrial DNA. Sci Rep 6:23421. https://doi.org/10.1038/srep23421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li YKH, Wang LL et al (2014) Establishment of methylation-specific quantitative PCR System for ID4 Gene in acute leukemia cells and its specificity and sensitivity. J Exp Hematol 22(2):269–274

    Google Scholar 

  40. Pan SYZJ, Wei YH et al (2004) Detection of promoter methylation of tumor suppressor gene APC and its application in the diagnosis of lung cancer. Chinese J Clinical Lab Sci 22(6):415–418. https://doi.org/10.13602/j.cnki

    Article  CAS  Google Scholar 

  41. Genereux DP, Johnson WC, Burden AF et al (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 36(22):e150. https://doi.org/10.1093/nar/gkn691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holmes EE, Jung M, Meller S et al (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS ONE 9(4):e93933. https://doi.org/10.1371/journal.pone.0093933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Major scientific and technological innovation projects of Shandong Province of China (Grant No. 2019JZZY011018) and Yantai Science and Technology Plan Project of China (Grant No. 2019MSGY133) and Yantai Science and Technology Plan Project of China (Grant No. 2019YD004).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by HJ, XY, MM, XW, HW, YX, LJ and SS. The first draft of the manuscript was written by HJ and XY. CS critically revised the work. All authors have read and approved the manuscript, and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Chengming Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Yantai Yuhuangding Hospital affiliated to Qingdao University with the protocol code of 2017210.

Consent for participate

All participants provided signed informed consent.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Yang, X., Mi, M. et al. Development and performance evaluation of TaqMan real-time fluorescence quantitative methylation specific PCR for detecting methylation level of PER2. Mol Biol Rep 49, 2097–2105 (2022). https://doi.org/10.1007/s11033-021-07027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07027-z

Keywords

Navigation