Skip to main content
Log in

Assessment of Association between miR-146a Polymorphisms and Expression of miR-146a, TRAF-6, and IRAK-1 Genes in Patients with Brucellosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness.

Methods and results

In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1β (IL-1β) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a.

Conclusions

To the best of writers’ knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data analyzed are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Quinn PJ, Markey BK, Leonard FC, Hartigan P, Fanning S, Fitzpatrick E (2011) Veterinary microbiology and microbial disease. Wiley

  2. Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard J-P (2002) The innate immune response against Brucella in humans. Vet Microbiol 90:383–394

    Article  CAS  PubMed  Google Scholar 

  3. Ma Q-L, Liu A-C, Ma X-J, Wang Y-B, Hou Y-T, Wang Z-H (2015) Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis. Int J Clin Exp Med 8:17530

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmed W (2018) Small non-coding RNAs in immunity of Brucella. J Bacteriol Mycol Open Access 6:197–198

    Google Scholar 

  5. Roop RM II, Caswell CC (2013) Bacterial persistence: finding the “sweet spot.” Cell Host Microbe 14:119–120

    Article  CAS  PubMed  Google Scholar 

  6. Hatfield S, Shcherbata H, Fischer K, Nakahara K, Carthew R, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  CAS  PubMed  Google Scholar 

  7. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Can Res 67:7713–7722

    Article  CAS  Google Scholar 

  8. Thatcher EJ, Flynt AS, Li N, Patton JR, Patton JG (2007) MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn 236:2172–2180

    Article  CAS  PubMed  Google Scholar 

  9. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  CAS  PubMed  Google Scholar 

  10. Hung P-S, Chang K-W, Kao S-Y, Chu T-H, Liu C-J, Lin S-C (2012) Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral Oncol 48:404–408

    Article  CAS  PubMed  Google Scholar 

  11. Silwal P, Kim YS, Basu J, Jo E-K (2020) The roles of microRNAs in regulation of autophagy during bacterial infection.

  12. Keck J, Gupta R, Christenson LK, Arulanandam BP (2017) MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 36:287–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui B, Liu W, Wang X et al (2017) Brucella Omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages. Front Immunol 8:708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rong H, Jiao H, Hao Y et al (2017) CD14 gene silencing alters the microRNA expression profile of RAW264. 7 cells stimulated by Brucella melitensis infection. Innate Immun 23:424–431

    Article  CAS  PubMed  Google Scholar 

  15. Zheng K, Chen D-S, Wu Y-Q et al (2012) MicroRNA expression profile in RAW264. 7 cells in response to Brucella melitensis infection. Int J Biol Sci 8:1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duval M, Cossart P and Lebreton A (2017) Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk.

  17. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  18. Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R (2018) microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene 640:66–72

    Article  PubMed  CAS  Google Scholar 

  19. Butler JM (2012) Single nucleotide polymorphisms and applications. Advanced Topics in Forensic DNA Typing, Academic Press, California, USA, 347–369

  20. Cammaerts S, Strazisar M, De Rijk P, Del Favero J (2015) Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 6:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Han M, Zheng Y (2013) Comprehensive analysis of single nucleotide polymorphisms in human microRNAs. PloS One 8:e78028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci 105:7269–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo X, Yang W, Ye D-Q et al (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Gene 7:e1002128

    Article  CAS  Google Scholar 

  24. Zhou Q, Hou S, Liang L et al (2014) MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behcet’s disease and Vogt–Koyanagi–Harada syndrome. Ann Rheum Dis 73:170–176

    Article  CAS  PubMed  Google Scholar 

  25. Wu M, Jolicoeur N, Li Z et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716

    Article  CAS  PubMed  Google Scholar 

  26. Kazemi S, Afshar S, Karami M et al (2021) Association between risk of brucellosis and genetic variations in MicroRNA-146a. BMC Infect Dis 21:1–7

    Article  CAS  Google Scholar 

  27. Kazemi S, Saidijam M, Hashemi SH, Karami M, Vaisi-Raygani A, Alikhani MY (2016) Analysis of IL-10 and IL-6 gene polymorphisms and their serum levels in patients with brucellosis: a case control study. Immunol Invest 45:107–115

    Article  CAS  PubMed  Google Scholar 

  28. Kazemi S, Vaisi-Raygani A, Keramat F et al (2019) Evaluation of the relationship between IL-12, IL-13 and TNF-α gene polymorphisms with the susceptibility to brucellosis: a case control study. BMC Infect Dis 19:1–7

    Article  CAS  Google Scholar 

  29. Majzoobi MM, Hashemi SH, Mamani M, Keramat F, Poorolajal J, Basir HRG (2018) Effect of hydroxychloroquine on treatment and recurrence of acute brucellosis: a single-blind, randomized clinical trial. Int J Antimicrob Agents 51:365–369

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  31. Starr T, Child R, Wehrly TD et al (2012) Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed W, Zheng K, Liu Z-F (2016) Establishment of chronic infection: Brucella’s stealth strategy. Front Cell Infect Microbiol 6:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. He Y, Reichow S, Ramamoorthy S et al (2006) Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun 74:5035–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salcedo SP, Marchesini MI, Lelouard H et al (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathogens 4:e21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Snyder GA, Deredge D, Waldhuber A et al (2014) Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry. J Biol Chem 289:669–679

    Article  CAS  PubMed  Google Scholar 

  36. Castañeda-Ramírez A, González-Rodríguez D, Hernández-Pineda J, Verdugo-Rodríguez A (2015) Blocking the expression of syntaxin 4 interferes with initial phagocytosis of Brucella melitensis in macrophages. Can J Vet Res 79:39–45

    PubMed  PubMed Central  Google Scholar 

  37. Wagh V, Urhekar A, Modi D (2017) Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis 102:24–30

    Article  CAS  PubMed  Google Scholar 

  38. Xiao B, Liu Z, Li B-S et al (2009) Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 200:916–925

    Article  CAS  PubMed  Google Scholar 

  39. Curtale G, Citarella F, Carissimi C et al (2010) An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood J Am Soc Hematol 115:265–273

    CAS  Google Scholar 

  40. Alipoor B, Ghaedi H, Meshkani R, Omrani M, Sharifi Z, Golmohammadi T (2018) The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes. J Endocrinol Invest 41:557–566

    Article  CAS  PubMed  Google Scholar 

  41. Ramkaran P, Khan S, Phulukdaree A, Moodley D, Chuturgoon AA (2014) miR-146a polymorphism influences levels of miR-146a, IRAK-1, and TRAF-6 in young patients with coronary artery disease. Cell Biochem Biophys 68:259–266

    Article  CAS  PubMed  Google Scholar 

  42. Ntelios D, Efthimiadis G, Zegkos T et al (2020) Correlation of miR-146a-5p plasma levels and rs2910164 polymorphism with left ventricle outflow tract obstruction in hypertrophic cardiomyopathy. Hellenic J Cardiol

  43. Xiong X-d, Cho M, Cai X-p et al (2014) A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutation Res /Fundamental Mol Mech Mutagene 761:15–20

    Article  CAS  Google Scholar 

  44. Shao Y, Li J, Cai Y et al (2014) The functional polymorphisms of miR-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediators Inflamm 2014

  45. Luo X, Zhang X, Wu X et al (2018) Brucella downregulates tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages. Front Immunol 8:2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jiao H, Luo Y, Zhou Z et al (2020) Integrative Bioinformatics Indentification of the Autophagic Pathway-Associated miRNA-mRNA Networks in RAW264. 7 Macrophage Cells Infected with∆ Omp25 Brucella melitensis. Inflammation 43:532–539

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Chen J, Wang H et al (2013) HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathogens 9:e1003248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10–dependent microRNA-146b. Proc Natl Acad Sci 110:11499–11504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li T, Morgan MJ, Choksi S, Zhang Y, Kim Y-S, Liu Z-g (2010) MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat Immunol 11:799–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Hara SP, Splinter PL, Gajdos GB et al (2010) NFκB p50-CCAAT/enhancer-binding protein β (C/EBPβ)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285:216–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Vice-chancellor of Research of Hamadan University of Medical Sciences, Hamadan, Iran for advocating this research. We also thanks Professor Ali Reza Soltanian for his cooperation in statistical analysis of the results.

Funding

This study was funded by the Hamadan University of medical sciences, Hamadan, IRAN, under Grant Number 9711307368.

Author information

Authors and Affiliations

Authors

Contributions

The design and supervision of the study were conducted by MYA. SA and MS carried out data interpretation. SK collected the data and conducted the experiments. SHH and FK conducted clinical examinations. MK analyzed the numerical findings of the study. The manuscript has been read and approved by all the authors.

Corresponding author

Correspondence to Mohammad Yousef Alikhani.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

The present study was ethically approved by the Hamadan University of Medical Sciences, Institutional Review Board (IR.UMSHA.REC.1397.857).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, S., Afshar, S., Keramat, F. et al. Assessment of Association between miR-146a Polymorphisms and Expression of miR-146a, TRAF-6, and IRAK-1 Genes in Patients with Brucellosis. Mol Biol Rep 49, 1995–2002 (2022). https://doi.org/10.1007/s11033-021-07014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07014-4

Keywords

Navigation