Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660
Article
PubMed
Google Scholar
Reis-Filho JS, Lakhani SR (2008) Breast cancer special types: why bother? J Pathol. https://doi.org/10.1002/path.2419
Article
PubMed
Google Scholar
Shea EKH, Koh VCY, Tan PH (2020) Invasive breast cancer: current perspectives and emerging views. Pathol Int. https://doi.org/10.1111/pin.12910
Article
PubMed
Google Scholar
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. https://doi.org/10.1016/j.gendis.2018.05.001
Article
PubMed
PubMed Central
Google Scholar
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. https://doi.org/10.1093/annonc/mdt303
Article
PubMed
PubMed Central
Google Scholar
Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P et al (2019) Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann Oncol. https://doi.org/10.1093/annonc/mdz235
Article
PubMed
PubMed Central
Google Scholar
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu YC, Liu CY (2020) Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. https://doi.org/10.1111/cpr.12801
Article
PubMed
PubMed Central
Google Scholar
Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. https://doi.org/10.1002/emmm.201100209
Article
PubMed
PubMed Central
Google Scholar
Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A et al (2018) The prognostic and therapeutic application of microRNAs in breast cancer: tissue and circulating microRNAs. J Cell Physiol. https://doi.org/10.1002/jcp.25813
Article
PubMed
Google Scholar
Dvorska D, Brany D, Nachajova M et al (2021) Breast cancer and the other non-coding RNAs. Int J Mol Sci 22(6):3280. https://doi.org/10.3390/ijms22063280
CAS
Article
PubMed
PubMed Central
Google Scholar
Erbes T, Hirschfeld M, Rucker G, Jaeger M, Boas J, Iborra S et al (2015) Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. https://doi.org/10.1186/s12885-015-1190-4
Article
PubMed
PubMed Central
Google Scholar
Kashyap D, Kaur H (2020) Cell-free miRNAs as non-invasive biomarkers in breast cancer: significance in early diagnosis and metastasis prediction. Life Sci. https://doi.org/10.1016/j.lfs.2020.117417
Article
PubMed
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. https://doi.org/10.1186/gb-2007-8-2-r19
Article
PubMed
PubMed Central
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034
Article
PubMed
PubMed Central
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. https://doi.org/10.2307/2531595
Article
PubMed
Google Scholar
Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577
CAS
Article
PubMed
Google Scholar
Sheskin DJ (2011) Handbook of parametric and nonparametric statistical procedures, 5th edn. Chapman & Hall/CRC, Boca Raton
Google Scholar
Hill DA, Barry M, Wiggins C, Nibbe A, Royce M et al (2017) Estrogen receptor quantitative measures and breast cancer survival. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-017-4439-6
Article
PubMed
PubMed Central
Google Scholar
Purdie CA, Quinlan P, Jordan LB, Ashfield A, Ogston S (2014) Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br J Cancer 110(3):565–572. https://doi.org/10.1038/bjc.2013.756
CAS
Article
PubMed
Google Scholar
Lombardi A, Lazzeroni R, Bersigotti L, Vitale V, Amanti C (2021) The proper Ki-67 cut-off in hormone responsive breast cancer: a monoinstitutional analysis with long-term follow-up. Breast Cancer 13:213–217. https://doi.org/10.2147/BCTT.S305440
Article
PubMed
PubMed Central
Google Scholar
Nielsen TO, Leung SCY, Rimm DL, Dodson A, Badve S et al (2021) Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in Breast Cancer Working Group. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa201
Article
PubMed
Google Scholar
Kanyilmaz G, Yavuz BB, Aktan M, Karaagac M, Uyar M, Findik S (2019) Prognostic importance of Ki-67 in Breast Cancer and its relationship with other prognostic factors. Eur J Breast Health. https://doi.org/10.5152/ejbh.2019.4778
Article
PubMed
PubMed Central
Google Scholar
Hennigs A, Riedel F, Gondos A, Sinn P, Schirmacher P, Marmé F et al (2016) Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer. https://doi.org/10.1186/s12885-016-2766-3
Article
PubMed
PubMed Central
Google Scholar
Soliman NA, Yussif SM (2016) Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med 13(4):496–504. https://doi.org/10.20892/j.issn.2095-3941.2016.0066
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu W, Liu M, Fan Y, Ma F, Xu N, Xu B (2018) Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med 7(9):4420–4433. https://doi.org/10.1002/cam4.1723
CAS
Article
PubMed
PubMed Central
Google Scholar
De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E et al (2015) MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. https://doi.org/10.18632/oncotarget.5495
Article
PubMed
PubMed Central
Google Scholar
Ilhan-Mutlu A, Tezcan G, Schoppmann SF, Preusser M, Spyridoula K et al (2015) microRNA-21 expression is elevated in esophageal adenocarcinoma after neoadjuvant chemotherapy. Cancer Investig 33(6):246–250. https://doi.org/10.3109/07357907.2015.1024319
CAS
Article
Google Scholar
McGuire A, Casey MC, Waldron RM, Heneghan H, Kalinina O et al (2020) Prospective assessment of systemic microRNAs as markers of response to neoadjuvant chemotherapy in breast cancer. Cancers 12(7):1820. https://doi.org/10.3390/cancers12071820
Di Cosimo S, Appierto V, Pizzamiglio S, Silvestri M, Baselga J et al (2020) Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. https://doi.org/10.3390/ijms21041386
Gezer U, Keskin S, Iğci A, Tükenmez M, Tiryakioğlu D et al (2014) Abundant circulating microRNAs in breast cancer patients fluctuate considerably during neoadjuvant chemotherapy. Oncol Lett. https://doi.org/10.3892/ol.2014.2188
Lindholm EM, Aure MR, Haugen MH, Sahlberg KK, Kristensen VN et al (2019) miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol. https://doi.org/10.1002/1878-0261.12561
Gulyaeva LF, Kushlinskiy NE (2016) Regulatory mechanisms of microRNA expression. J Transl Med. https://doi.org/10.1186/s12967-016-0893-x
Article
PubMed
PubMed Central
Google Scholar
Qin XG, Zeng JH, Lin P, Mo WJ, Li Q, Feng ZB, Luo DZ, Yang H, Chen G, Zeng JJ (2019) Prognostic value of small nuclear RNAs (snRNAs) for digestive tract panadenocarcinomas identified by RNA sequencing data. Pathol Res Pract. https://doi.org/10.1016/j.prp.2018.11.004
Article
PubMed
Google Scholar
Mroczek S, Dziembowski A (2013) U6 RNA biogenesis and disease association. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.1181
Article
PubMed
Google Scholar
Dvinge H, Guenthoer J, Porter PL, Bradley RK (2019) RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res. https://doi.org/10.1101/gr.246678.118
Article
PubMed
PubMed Central
Google Scholar
Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T et al (2015) Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. https://doi.org/10.1007/s11605-015-2829-9
Article
PubMed
Google Scholar
Kitamura K, Nimura K (2021) Regulation of RNA splicing: aberrant splicing regulation and therapeutic targets in cancer. Cells 10(4):923. https://doi.org/10.3390/cells10040923
CAS
Article
PubMed
PubMed Central
Google Scholar
Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge GW, Liu YL, Nakshatri H (2011) Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. https://doi.org/10.1186/bcr2943
Article
PubMed
PubMed Central
Google Scholar
Lou G, Ma N, Xu Y, Jiang L, Yang J, Wang CX et al (2015) Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int J Mol Med. https://doi.org/10.3892/ijmm.2015.2338
Article
PubMed
Google Scholar
Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M et al (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. https://doi.org/10.1038/sj.bjc.6606076
Article
PubMed
PubMed Central
Google Scholar
Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J et al (2014) U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2014.10.064
Article
PubMed
Google Scholar
Rehbein G, Schmidt B, Fleischhacker M (2015) Extracellular microRNAs in bronchoalveolar lavage samples from patients with lung diseases as predictors for lung cancer. Clin Chim Acta. https://doi.org/10.1016/j.cca.2015.07.027
Article
PubMed
Google Scholar
Yan C, Hu J, Yang Y, Hu H, Zhou DX, Ma M, Xu N (2019) Plasma extracellular vesicle-packaged microRNAs as candidate diagnostic biomarkers for early-stage breast cancer. Mol Med Rep. https://doi.org/10.3892/mmr.2019.10669
Article
PubMed
PubMed Central
Google Scholar
Hsieh TH, Hsu CY, Tsai CF, Long CY, Wu CH, Wu DC, Lee JN, Chang WC, Tsai EM (2015) HDAC inhibitors target HDAC5, upregulate MicroRNA-125a-5p, and induce apoptosis in breast cancer cells. Mol Ther. https://doi.org/10.1038/mt.2014.247
Article
PubMed
PubMed Central
Google Scholar
Yang C, Wang C, Chen X, Chen SD, Zhang YN, Zhi F, Wang JJ, Li LM, Zhou XJ, Li NY (2013) Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. https://doi.org/10.1002/ijc.27657
Article
PubMed
PubMed Central
Google Scholar
Moustafa AA, Ziada M, Elshaikh A, Datta A, Kim H, Moroz K, Srivastav S, Thomas R, Silberstein JL, Moparty K (2017) Identification of microRNA signature and potential pathway targets in prostate cancer. Exp Biol Med. https://doi.org/10.1177/1535370216681554
Article
Google Scholar
Bergamaschi A, Katzenellenbogen BS (2012) Tamoxifen downregulation of miR-451 increases 14–3-3 zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene. https://doi.org/10.1038/onc.2011.223
Article
PubMed
Google Scholar
Wang W, Zhang L, Wang Y, Ding Y, Chen T, Wang Y (2017) Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. https://doi.org/10.1038/cddis.2017.460
Article
PubMed
PubMed Central
Google Scholar
Shao B, Wang X, Zhang L, Li D, Liu X, Song G, Cao H, Zhu J, Li H (2019) Plasma microRNAs predict chemoresistance in patients with metastatic breast cancer. Technol Cancer Res Treat. https://doi.org/10.1177/1533033819828709
Article
PubMed
PubMed Central
Google Scholar
Xing AY, Wang B, Li YH, Chen X, Wang YW et al (2021) Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathol Oncol Res 27:1609753. https://doi.org/10.3389/pore.2021.1609753
Article
PubMed
PubMed Central
Google Scholar
Gu X, Xue JQ, Han SJ, Qian SY, Zhang WH (2016) Circulating microRNA-451 as a predictor of resistance to neoadjuvant chemotherapy in breast cancer. Cancer Biomark 16(3):395–403. https://doi.org/10.3233/CBM-160578
CAS
Article
PubMed
Google Scholar
Zhang H, Chen P, Yang J (2020) miR-451a suppresses the development of breast cancer via targeted inhibition of CCND2. Mol Cell Probes. https://doi.org/10.1016/j.mcp.2020.101651
Article
PubMed
PubMed Central
Google Scholar
Fang R, Zhu Y, Hu L, Khadka VS, Ai J, Zou H, Ju D, Jiang B, Deng Y, Hu X (2019) Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer. Front Physiol. https://doi.org/10.3389/fphys.2018.01879
Article
PubMed
PubMed Central
Google Scholar
Luo J, Zhao Q, Zhang W, Zhang Z, Gao J, Zhang C, Li Y, Tian Y (2014) A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep. https://doi.org/10.3892/mmr.2014.2274
Article
PubMed
PubMed Central
Google Scholar
Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, Chang G, Li X, Li Q, Wang S, Wang W (2014) MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0096228
Article
PubMed
PubMed Central
Google Scholar
Liu B, Su F, Chen M, Li Y, Qi X, Xiao J, Li X, Liu X, Liang W, Zhang Y, Zhang J (2017) Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum Pathol. https://doi.org/10.1016/j.humpath.2017.03.016
Article
PubMed
PubMed Central
Google Scholar
Motamedi M, Chaleshtori MH, Ghasemi S, Mokarian F (2019) Plasma level of mir-21 and mir-451 in primary and recurrent breast cancer patients. Breast Cancer Targets Ther. https://doi.org/10.2147/BCTT.S224333
Article
Google Scholar
Al-Khanbashi M, Caramuta S, Alajmi AM, Al-Haddabi I, Al-Riyami M, Lui WO, Al-Moundhri MS (2016) Tissue and serum miRNA profile in locally advanced breast cancer (LABC) in response to neo-adjuvant chemotherapy (NAC) treatment. PLoS ONE. https://doi.org/10.1371/journal.pone.0152032
Article
PubMed
PubMed Central
Google Scholar
Ng EKO, Li R, Shin VY, Jin HC, Leung CPH, Ma ESK, Pang R, Chua D (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. https://doi.org/10.1371/journal.pone.0053141
Article
PubMed
PubMed Central
Google Scholar
Pan X, Wang R, Wang ZX (2013) The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-12-0802
Article
PubMed
PubMed Central
Google Scholar
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B (2019) A comprehensive review on miR-451: a promising cancer biomarker with therapeutic potential. J Cell Physiol. https://doi.org/10.1002/jcp.28888
Article
PubMed
Google Scholar
Ozawa PMM, Jucoski TS, Vieira E, Carvalho TM, Malheiros D, Ribeiro EMDS (2020) Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl Res. https://doi.org/10.1016/j.trsl.2020.04.002
Article
PubMed
Google Scholar
Aggarwal V, Priyanka K, Tuli HS (2020) Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol Diagn Ther. https://doi.org/10.1007/s40291-020-00447-w
Article
PubMed
Google Scholar