Skip to main content

Advertisement

Log in

The link of ERCC2 rs13181 and ERCC4 rs2276466 polymorphisms with breast cancer in the Bangladeshi population

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BC) is the most common disease in women and the leading cause of death from cancer globally. Epidemiological studies examined that nucleotide excision repair genes ERCC2 (rs13181) and ERCC4 (rs2276466) SNPs might increase cancer risk. Based on the previous investigation, this study was conducted to explore the correlation between these polymorphisms and BC susceptibility in Bangladeshi women.

Methods and results

Between January 2019 and January 2020, 140 blood samples were collected from female patients histologically diagnosed with BC, and 111 female controls were recruited from non-cancer subjects. Genotyping was performed applying the PCR–RFLP method, and all statistical analyzes were conducted using SPSS, version 25.0. Comparison of characteristics and clinicopathological features between ERCC2 rs13181 and ERCC4 rs2276466 carriers and non-carriers showed no significant link with BC. Analysis of ERCC2 rs13181 with the risk of BC showed that the GG genotype and G allele carriers showed a fourfold and 1.78-fold higher risk (OR 4.00, P = 0.001 and OR 1.78, P = 0.002) that are statistically significant. In addition, the patients with combined TG+GG genotype revealed a 2.09-fold increased chance (OR 2.09, P = 0.020) BC development. Analysis of recessive model (GG vs. TT+TG) also depicted 2.74-times significantly higher risk (OR 2.74, P = 0.002). On the other hand, ERCC4 rs2276466 polymorphism did not show any significant association with BC (P > 0.05).

Conclusions

Our findings show that ERCC2 rs13181 is linked to an elevated risk of BC. Our study also shows that ERCC4 rs2276466 polymorphism has no substantial risk of BC in the Bangladeshi population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 11:151–164. https://doi.org/10.2147/BCTT.S176070

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aziz MA, Jafrin S, Islam MS (2021) Human TERT promoter polymorphism rs2853669 is associated with cancers: an updated meta-analysis. Hum Cell 34:1066–1081. https://doi.org/10.1007/s13577-021-00520-4

    Article  CAS  PubMed  Google Scholar 

  4. Shabnaz S, Ahmed MU, Islam MS et al (2016) Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumour Biol 37:7229–7237. https://doi.org/10.1007/s13277-015-4612-7

    Article  CAS  PubMed  Google Scholar 

  5. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomark Prev 11:1513–1530

    CAS  Google Scholar 

  6. Yu H, Liu Z, Huang YJ et al (2012) Association between single nucleotide polymorphisms in ERCC4 and risk of squamous cell carcinoma of the head and neck. PLoS ONE 7:e41853. https://doi.org/10.1371/journal.pone.0041853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469. https://doi.org/10.1093/mutage/17.6.463

    Article  CAS  PubMed  Google Scholar 

  8. Alanazi M, Pathan AA, Ajaj SA et al (2013) DNA repair genes XRCC1, XRCC3, XPD, and OGG1 polymorphisms among the central region population of Saudi Arabia. Biol Res 46:161–167. https://doi.org/10.4067/S0716-97602013000200007

    Article  PubMed  Google Scholar 

  9. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    CAS  PubMed  Google Scholar 

  10. Winsey SL, Haldar NA, Marsh HP et al (2000) A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 60:5612–5616

    CAS  PubMed  Google Scholar 

  11. Wu KG, He XF, Li YH et al (2014) Association between the XPD/ERCC2 Lys751Gln polymorphism and risk of cancer: evidence from 224 case-control studies. Tumour Biol 35:11243–11259. https://doi.org/10.1007/s13277-014-2379-x

    Article  CAS  PubMed  Google Scholar 

  12. Coin F, Marinoni JC, Rodolfo C et al (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20:184–188. https://doi.org/10.1038/2491

    Article  CAS  PubMed  Google Scholar 

  13. Yan Y, Liang H, Light M et al (2014) XPD Asp312Asn and Lys751Gln polymorphisms and breast cancer susceptibility: a meta-analysis. Tumour Biol 35:1907–1915. https://doi.org/10.1007/s13277-013-1256-3

    Article  CAS  PubMed  Google Scholar 

  14. Das S, Naher L, Aka TD et al (2021) The ECCR1 rs11615, ERCC4 rs2276466, XPC rs2228000 and XPC rs2228001 polymorphisms increase the cervical cancer risk and aggressiveness in the Bangladeshi population. Heliyon 7:e05919. https://doi.org/10.1016/j.heliyon.2021.e05919

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wood RD, Mitchell M, Sgouros J et al (2001) Human DNA repair genes. Science 291:1284–1289. https://doi.org/10.1126/science.1056154

    Article  CAS  PubMed  Google Scholar 

  16. Shi TY, He J, Qiu LX et al (2012) Association between XPF polymorphisms and cancer risk: a meta-analysis. PLoS ONE 7:e38606. https://doi.org/10.1371/journal.pone.0038606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niedernhofer LJ, Odijk H, Budzowska M et al (2004) The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 24:5776–5787. https://doi.org/10.1128/MCB.24.13.5776-5787.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmad A, Robinson AR, Duensing A et al (2008) ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 28:5082–5092. https://doi.org/10.1128/MCB.00293-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brookman KW, Lamerdin JE, Thelen MP et al (1996) ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 16:6553–6562. https://doi.org/10.1128/MCB.16.11.6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mechanic LE, Millikan RC, Player J et al (2006) Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. Carcinogenesis 27:1377–1385. https://doi.org/10.1093/carcin/bgi330

    Article  CAS  PubMed  Google Scholar 

  21. Lee SA, Lee KM, Park WY et al (2005) Obesity and genetic polymorphism of ERCC2 and ERCC4 as modifiers of risk of breast cancer. Exp Mol Med 37:86–90. https://doi.org/10.1038/emm.2005.12

    Article  CAS  PubMed  Google Scholar 

  22. Bradford PT, Goldstein AM, Tamura D et al (2011) Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet 48:168–176. https://doi.org/10.1136/jmg.2010.083022

    Article  PubMed  Google Scholar 

  23. Budden T, Bowden NA (2013) The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int J Mol Sci 14:1132–1151. https://doi.org/10.3390/ijms14011132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He J, Xu Y, Qiu LX et al (2012) Polymorphisms in ERCC1 and XPF genes and risk of gastric cancer in an eastern Chinese population. PLoS ONE 7:e49308. https://doi.org/10.1371/journal.pone.0049308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XF, Liu S, Shao ZK (2013) Effects of polymorphisms in nucleotide excision repair genes on glioma risk in a Chinese population. Gene 529:317–320. https://doi.org/10.1016/j.gene.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  26. Yang Z, Fang X, Pei X et al (2013) Polymorphisms in the ERCC1 and XPF genes and risk of breast cancer in a Chinese population. Genet Test Mol Biomark 17:700–706. https://doi.org/10.1089/gtmb.2013.0122

    Article  CAS  Google Scholar 

  27. Li H, Zhou L, Ma J et al (2020) Distribution and susceptibility of ERCC1/XPF gene polymorphisms in Han and Uygur women with breast cancer in Xinjiang, China. Cancer Med 9:9571–9580. https://doi.org/10.1002/cam4.3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balkan E, Bilici M, Gundogdu B et al (2020) ERCC2 Lys751Gln rs13181 and XRCC2 Arg188His rs3218536 gene polymorphisms contribute to subsceptibility of colon, gastric, HCC, lung and prostate cancer. J BUON 25:574–581

    PubMed  Google Scholar 

  29. Liu Y, Hu Y, Zhang M et al (2018) Polymorphisms in ERCC2 and ERCC5 and risk of prostate cancer: a meta-analysis and systematic review. J Cancer 9:2786–2794. https://doi.org/10.7150/jca.25356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Savas S, Tuzmen S, Ozcelik H (2006) Human SNPs resulting in premature stop codons and protein truncation. Hum Genomics 2:274–286. https://doi.org/10.1186/1479-7364-2-5-274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. rs13181 (SNP)—Genes and regulation—Homo_sapiens—Ensembl genome browser 104. [cited 2021 Jul 28]. Available from https://asia.ensembl.org/Homo_sapiens/Variation/Mappings?db=core;r=19:45351161-45352161;v=rs13181;vdb=variation;vf=201701247

  32. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  CAS  Google Scholar 

  33. Islam MS, Islam MS, Parvin S et al (2015) Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients. Tumour Biol 36:5451–5457. https://doi.org/10.1007/s13277-015-3211-y

    Article  CAS  PubMed  Google Scholar 

  34. Mitra AK, Singh N, Garg VK et al (2009) Statistically significant association of the single nucleotide polymorphism (SNP) rs13181 (ERCC2) with predisposition to squamous cell carcinomas of the head and neck (SCCHN) and breast cancer in the north Indian population. J Exp Clin Cancer Res 28:104. https://doi.org/10.1186/1756-9966-28-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Q, Fu Y, Wen L et al (2021) XPD polymorphisms and risk of hepatocellular carcinoma and gastric cancer: a meta-analysis. Technol Cancer Res Treat 20:1533033821990046. https://doi.org/10.1177/1533033821990046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu B, Li J, Gao Q, Yu W, Yang Q, Li X (2014) Laryngeal cancer risk and common single nucleotide polymorphisms in nucleotide excision repair pathway genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5 and XPA. Gene 542:64–68. https://doi.org/10.1016/j.gene.2014.02.043

    Article  CAS  PubMed  Google Scholar 

  37. Tezuka S, Ueno M, Kobayashi S et al (2018) Predictive value of ERCC1, ERCC2, ERCC4, and glutathione S-transferase Pi expression for the efficacy and safety of FOLFIRINOX in patients with unresectable pancreatic cancer. Am J Cancer Res 8:2096–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bajpai D, Banerjee A, Pathak S, Jain SK, Singh N (2013) Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix. Mol Cell Biochem 377:45–53. https://doi.org/10.1007/s11010-013-1569-y

    Article  CAS  PubMed  Google Scholar 

  39. Qiu LX, Yao L, Zhang J et al (2010) XPD Lys751Gln polymorphism and breast cancer susceptibility: a meta-analysis involving 28,709 subjects. Breast Cancer Res Treat 124:229–235. https://doi.org/10.1007/s10549-010-0813-3

    Article  CAS  PubMed  Google Scholar 

  40. Pabalan N, Francisco-Pabalan O, Sung L et al (2010) Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer. Breast Cancer Res Treat 124:531–541. https://doi.org/10.1007/s10549-010-0863-6

    Article  CAS  PubMed  Google Scholar 

  41. Tomescu D, Kavanagh G, Ha T et al (2001) Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22:403–408. https://doi.org/10.1093/carcin/22.3.403

    Article  CAS  PubMed  Google Scholar 

  42. Sturgis EM, Zheng R, Li L et al (2000) XPD/ERCC2 polymorphisms and risk of head and neck cancer: a case-control analysis. Carcinogenesis 21:2219–2223. https://doi.org/10.1093/carcin/21.12.2219

    Article  CAS  PubMed  Google Scholar 

  43. Tsodikov OV, Enzlin JH, Schärer OD et al (2005) Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 102:11236–11241. https://doi.org/10.1073/pnas.0504341102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Enzlin JH, Schärer OD (2002) The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J 21:2045–2053. https://doi.org/10.1093/emboj/21.8.2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith TR, Levine EA, Perrier ND et al (2003) DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomark Prev 12:1200–1204

    CAS  Google Scholar 

  46. Jorgensen TJ, Visvanathan K, Ruczinski I et al (2007) Breast cancer risk is not associated with polymorphic forms of xeroderma pigmentosum genes in a cohort of women from Washington County, Maryland. Breast Cancer Res Treat 101:65–71. https://doi.org/10.1007/s10549-006-9263-3

    Article  CAS  PubMed  Google Scholar 

  47. Romanowicz-Makowska H, Smolarz B, Kulig A (2007) Polymorphisms in XRCC1 and ERCC4/XPF DNA repair genes and associations with breast cancer risk in women. Pol Merkur Lekarski 22:200–203

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dhaka University’s authorities for granting permission to perform this research at the pharmacogenetics and pharmacokinetics laboratory. The authors are also grateful to the individuals who provided written consent to participate in this research and gave permission for their samples and clinical data to be used.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Abdur Rashid or Mohammad Safiqul Islam.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahaba, S.A., Rashid, M.A., Islam, M.S. et al. The link of ERCC2 rs13181 and ERCC4 rs2276466 polymorphisms with breast cancer in the Bangladeshi population. Mol Biol Rep 49, 1847–1856 (2022). https://doi.org/10.1007/s11033-021-06994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06994-7

Keywords

Navigation