Skip to main content
Log in

Association of PD-1 and PDL-1 gene polymorphisms with colorectal cancer risk and prognosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Programmed Cell Death-1 (PD-1) together with Programmed Death Ligand 1 (PDL-1) have crucial roles in anti-tumor immune response, cancer susceptibility and prognosis. Since PD-1 and PDL-1 have been considered as important genetic risk factors in cancer development and their functions can be affected by polymorphic sites, we investigated the effects of PD-1 rs2227981, rs2227982, rs36084323 and PDL-1 rs2282055, rs822336 gene polymorphisms on colorectal cancer (CRC) risk and prognosis in Turkish subjects.

Methods and results

Our study group consisted of 5-FU or Capacitabine prescribed CRC diagnosed patients and healthy controls. Genotype analyses of PD1 and PDL-1 polymorphisms were performed with Agena MassARRAY platform. rs36084323 CT genotype frequency was found to be higher in controls compared to cases (p < 0.001). rs36084323 CT genotype was highly associated with reduced CRC risk compared to CC genotype (OR 0.068, 95% CI 0.022–0.211, p < 0.001). In adjusted analysis, rs2282055 GG genotype was found to be associated with reduced CRC risk (OR 0.271, 95% CI 0.078–0.940, p = 0.040). rs2282055 TT genotype was found to be related to longer progression-free (Bonferroni corrected Log rank p = 0.013) and overall survival (Bonferroni corrected Log rank p = 0.009) to that of GG genotypes. Patients with rs822336 GC+CC genotypes showed longer overall survival times compared to GG (Log rank p = 0.044).

Conclusions

According to our results, PD-1 rs822336 G > C polymorphism might be useful in predicting CRC prognosis. PDL-1 rs2282055 T > G polymorphism might be useful in predicting both CRC risk and prognosis. Further studies should be conducted in larger and different populations to clear the roles of PD-1 and PDL-1 polymorphisms in CRC risk and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  3. Turkey Cancer Statistics (2016) Republic of Turkey, Ministry of Health- General Directorate of Public Health. https://hsgm.saglik.gov.tr/depo/birimler/kanser-db/istatistik/Turkiye_Kanser_Istatistikleri_2016.pdf. Accessed Apr 2021

  4. Death and causes of death statistics of Turkey in 2019. Turkish Statistical Institute (TUIK). https://data.tuik.gov.tr/Bulten/Index?p=Olum-ve-Olum-Nedeni-Istatistikleri-2019-33710. Accessed Apr 2021

  5. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1. 0 (2013) Cancer incidence and mortality worldwide: IARC CancerBase N0. 11 (Internet). Lyon: International Agency for Research on Cancer

  6. Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72(13):3125–3130. https://doi.org/10.1158/0008-5472.CAN-11-4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171. https://doi.org/10.1007/s00262-011-1012-8

    Article  CAS  PubMed  Google Scholar 

  8. Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900. https://doi.org/10.1038/onc.2008.35

    Article  CAS  PubMed  Google Scholar 

  9. Whiteside TL (2015) The role of regulatory T cells in cancer immunology. ImmunoTargets Ther 4:159–171. https://doi.org/10.2147/ITT.S55415

    Article  PubMed  PubMed Central  Google Scholar 

  10. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. https://doi.org/10.1146/annurev.immunol.23.021704.115611

    Article  CAS  PubMed  Google Scholar 

  11. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065X.2010.00923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J 1(1):3887–3895. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x

    Article  Google Scholar 

  13. Vibhakar RAV, Uan GLJ, Raganos FRT, Arzynkiewicz ZBD, Inger LARF (1997) Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res 28(232):25–28. https://doi.org/10.1006/excr.1997.3493

    Article  Google Scholar 

  14. Zhang N, Tu J, Wang X, Chu Q (2019) Programmed cell death-1/programmed cell death ligand-1 checkpoint inhibitors: differences in mechanism of action. Immunotherapy 11(5):429–441. https://doi.org/10.2217/imt-2018-0110

    Article  CAS  PubMed  Google Scholar 

  15. Agina HA, Ehsan NA, Abd-elaziz TA, Abdelfatah GA, Said EM, Sira MM (2019) Hepatic expression of programmed death-1 (PD-1) and its ligand, PD-L1, in children with autoimmune hepatitis : relation to treatment response. J Clin Exp Hepatol 1:256–264. https://doi.org/10.5114/ceh.2019.87642

    Article  Google Scholar 

  16. Boussiotis VA (2017) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375(18):1767–1778. https://doi.org/10.1056/NEJMra1514296

    Article  CAS  Google Scholar 

  17. Freeman BGJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034. https://doi.org/10.1084/jem.192.7.1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. PNAS 99(19):12293–12297. https://doi.org/10.1073/pnas.192461099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V (2017) PD-1/PD-L1 in disease. Immunotherapy 10:2. https://doi.org/10.2217/imt-2017-0120

    Article  CAS  Google Scholar 

  20. Zamani MR, Aslani S, Salmaninejad A, Javan RM, Rezaei N (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol 310:27–41. https://doi.org/10.1016/j.cellimm.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  21. Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10(3):727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hua Z, Li D, Xiang G, Xu F, Jie G, Fu Z, Jie Z, Da P, Li D (2011) PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat 129(1):195–201. https://doi.org/10.1007/s10549-011-1440-3

    Article  CAS  PubMed  Google Scholar 

  23. Lee SY, Jung DK, Choi JE, Jin CC, Hong MJ, Do SK, Kang HG, Lee WK, Seok Y, Lee EB et al (2017) Functional polymorphisms in PD-L1 gene are associated with the prognosis of patients with early stage non-small cell lung cancer. Gene 599:28–35. https://doi.org/10.1016/j.gene.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  24. Kasamatsu T, Awata M, Ishihara R, Murakami Y, Gotoh N, Matsumoto M (2020) PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma. Clin Exp Med 20(1):51–62. https://doi.org/10.1007/s10238-019-00585-4

    Article  PubMed  Google Scholar 

  25. Wagner M, Tupikowski K, Jasek M, Tomkiewicz A, Witkowicz A, Ptaszkowski K, Karpinski P, Zdrojowy R, Halon A, Karabon L (2020) SNP-SNP interaction in genes encoding PD-1/PD-L1 axis as a potential risk factor for clear cell renal cell carcinoma. Cancers 12(12):3521. https://doi.org/10.3390/cancers12123521

    Article  CAS  PubMed Central  Google Scholar 

  26. Yamamoto M, Kobayashi T, Mashima H, Miki D, Kuroda S, Hamaoka M, Aikata H, Chayama K, Ohdan H (2020) PD1 gene polymorphism is associated with a poor prognosis in hepatocellular carcinoma following liver resection, cohort study. Int J Surg 80:84–90. https://doi.org/10.1016/j.ijsu.2020.05.007

    Article  PubMed  Google Scholar 

  27. Nomizo T, Ozasa H, Tsuji T, Funazo T, Yasuda Y, Yoshida H, Yagi Y, Sakamori Y, Nagai H, Hirai T et al (2017) Clinical impact of single nucleotide polymorphism in PD-L1 on response to Nivolumab for advanced non-small-cell lung cancer patients. Nature 7(1):1–8. https://doi.org/10.1038/srep45124

    Article  CAS  Google Scholar 

  28. Su J, Dai B, Yuan W, Wang G, Zhang Z, Li Z, Liu J, Song J (2020) The influence of PD – L1 genetic variation on the prognosis of R0 resection colorectal cancer patients received capecitabine–based adjuvant chemotherapy: a long–term follow–up, real–world retrospective study. Cancer Chemother Pharmacol 85(5):969–978. https://doi.org/10.1007/s00280-020-04069-1

    Article  CAS  PubMed  Google Scholar 

  29. Huijian Z, Dianwen L, Xiaoli Z, Yonggang L, Min L, Shiju L (2019) The influence of PD-L1 rs2297136 polymorphism on the clinical outcomes of postoperative colorectal cancer patients receiving capecitabine-based adjuvant chemotherapy. China Oncol 29(10):795–802

    Google Scholar 

  30. Berntsson J, Eberhard J, Nodin B, Leandersson K, Larsson AH, Jirström K (2018) Expression of programmed cell death protein 1 (PD-1) and its ligand PD-L1 in colorectal cancer: relationship with sidedness and prognosis. OncoImmunology 7(8):1–16. https://doi.org/10.1080/2162402X.2018.1465165

    Article  Google Scholar 

  31. Janakiram NB, Rao CV (2014) The role of inflammation in colon cancer. Springer, Basel

    Book  Google Scholar 

  32. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60(1):2–12. https://doi.org/10.1002/0471142905.hg0212s60

    Article  Google Scholar 

  33. Da L, Zhang Y, Zhang C, Bu L, Zhu Y, Ma T (2018) Pathology—research and practice the PD-1 rs36084323 A > G polymorphism decrease cancer risk in Asian: a meta-analysis. Pathol Res Pract 214(11):1758–1764. https://doi.org/10.1016/j.prp.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  34. Shamsdin SA, Karimi MH, Hosseini SV, Geramizadeh B, Fattahi MR, Mehrabani D, Moravej A (2018) Associations of ICOS and PD.1 gene variants with colon cancer risk in the Iranian population. Asian Pac J Cancer Pre 19(3):693–698. https://doi.org/10.22034/APJCP.2018.19.3.693

    Article  CAS  Google Scholar 

  35. Ishizaki Y, Yukaya N, Kusuhara K, Kira R, Torisu H, Ihara K, Sakai Y, Sanefuji M, Pipo-Deveza JR et al (2010) PD1 as a common candidate susceptibility gene of subacute sclerosing panencephalitis. Human Genet 127(4):411–419. https://doi.org/10.1007/s00439-009-0781-z

    Article  CAS  Google Scholar 

  36. Wu Y, Zhao T, Jia Z, Cao D, Cao X, Pan Y, Zhao D, Zhang B, Jiang J (2019) Polymorphism of the programmed death-ligand 1 gene is associated with its protein expression and prognosis in gastric cancer. J Gastroenterol Hepatol 34(7):1201–1207. https://doi.org/10.1111/jgh.14520

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Peng Y, Li X, Zhang S, Peng Y, Shan J, Li M, Dai N, Feng Y, Xu C, Wang D (2020) The association of PD-L1 gene polymorphisms with non-small-cell lung cancer susceptibility and clinical outcomes in a Chinese population. Int J Clin Exp Pathol 13(8):2130–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao M, Zhang J, Chen S, Wang Y, Tian Q (2020) Influence of programmed death ligand-1-gene polymorphism rs822336 on the prognosis and safety of postoperative patients with NSCLC who received platinum-based adjuvant chemotherapy. Cancer Manag Res 12:6755–6766. https://doi.org/10.2147/CMAR.S255072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krawczyk P, Grenda A, Wojas-krawczyk K, Nico M, Reszka K, Pankowski J (2019) PD-L1 gene copy number and promoter polymorphisms regulate PD-L1 expression in tumor cells of non-small cell lung cancer patients. Cancer Genet 237:10–18. https://doi.org/10.1016/j.cancergen.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  40. Ma Y, Liu X, Zhu J, Li W, Guo L, Han X, Song B, Cheng S, Jie L (2015) Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. Int J Clin Exp Med 8(9):16585

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahmoudi M, Rezaiemanesh A, Salmaninejad A, Harsini S, Poursani S, Bahrami T, Tahghighi F, Ziaee V, Rezaei N (2015) PDCD1 single nucleotide genes polymorphisms confer susceptibility to juvenile-onset systemic lupus erythematosus. Autoimmunity 48(7):488–493. https://doi.org/10.3109/08916934.2015.1058370

    Article  CAS  PubMed  Google Scholar 

  42. Pawlak-Adamska E, Nowak O, Karabon L, Pokryszko-Dragan A, Partyka A, Tomkiewicz A, Ptaszkowski J, Frydecka I, Podemski R, Dybko J, Bilinska M (2017) PD-1 gene polymorphic variation is linked with first symptom of disease and severity of relapsing-remitting form of MS. J Neuroimmunol 305:115–127. https://doi.org/10.1016/j.jneuroim.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  43. Gomez GV, Rinck-Junior JA, Oliveira C, Silva DH, Mamoni RL, Lourenço GJ, Moraes AM, Lima CS (2018) PDCD1 gene polymorphisms as regulators of T‐lymphocyte activity in cutaneous melanoma risk and prognosis. Pigment Cell Melanoma Res 31(2):308–317. https://doi.org/10.1111/pcmr.12665

    Article  CAS  PubMed  Google Scholar 

  44. Piskin IE, Calık M, Abuhandan M, Kolsal E, Celik SK, İscan A (2013) PD-1 gene polymorphism in children with subacute sclerosing panencephalitis. Neuropediatrics 44(4):187–190. https://doi.org/10.1055/s-0033-1338134

    Article  CAS  PubMed  Google Scholar 

  45. Hoseini H (2021) Single nucleotide polymorphisms in the PD1 gene with susceptibility to breast cancer in women. Gene Rep 23:101146. https://doi.org/10.1016/j.genrep.2021.101146

    Article  Google Scholar 

  46. Santos N, Rodríguez-Romanos R, De La Cámara R, Brunet S, Nieto JB, Buño I, Martínez C, Jiménez-Velasco A, Vallejo C, González M, Solano C, Ferrá C, Sampol A, Pérez-Simón JA, López-Jiménez J, Díez JL, Gallardo D (2018) PD-1 genotype of the donor is associated with acute graft-versus-host disease after HLA-identical sibling donor stem cell transplantation. Ann Hematol 97(11):2217–2224. https://doi.org/10.1007/s00277-018-3438-y

    Article  CAS  PubMed  Google Scholar 

  47. Demirci AF, Demirtas CO, Eren F, Yılmaz D, Keklikkiran C, Ozdogan OC, Gunduz F (2020) Evaluation of the association between programmed cell death-1 gene polymorphisms and hepatocellular carcinoma susceptibility in Turkish subjects. A pilot study. J Gastrointestin Liver Dis 29(4):617–622. https://doi.org/10.15403/jgld-2623

    Article  PubMed  Google Scholar 

  48. Refae S, Gal J, Brest P, Giacchero D, Borchiellini D, Ebran N, Peyrade F, Guigay J, Milano G, Saada-Bouzid E (2020) Hyperprogression under immune checkpoint inhibitor: a potential role for germinal immunogenetics. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-60437-0

    Article  CAS  Google Scholar 

  49. El-Derany MO (2020) Polymorphisms in Interleukin 13 signaling and interacting genes predict advanced fibrosis and hepatocellular carcinoma development in non-alcoholic steatohepatitis. Biology 9(4):75. https://doi.org/10.3390/biology9040075

    Article  CAS  PubMed Central  Google Scholar 

  50. Liu T, Wan Z, Peng S, Wang Y, Chen H, Li X, Du Y (2018) Genetic variations in LTA gene and PDCD1 gene and intrauterine infection of hepatitis B virus: a case–control study in China. Amino Acids 50(7):877–883. https://doi.org/10.1007/s00726-018-2568-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Marmara University Scientific Research Projects Coordination Unit. Project No. FEN-C-DRP-110718-0407.

Author information

Authors and Affiliations

Authors

Contributions

MC contributed to the experimental molecular genetic analysis, study design and literature. EN, UIK, NDS and CC as the clinicians selected and provided the blood samples and clinical data of subjects to participate in this study. AK contributed to the interpretation and evaluation of the results. BS contributed to the whole study management, development of the final protocol of the experiments, interpretation of the results and organization of the manuscript. All authors were involved in preparing the manuscript.

Corresponding author

Correspondence to Belgin Susleyici.

Ethics declarations

Conflict of interest

No conflict of interest was declared by the authors.

Ethical approval

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by Marmara University Local Ethical Committee with the protocol number 09.2018.174.

Informed consent

Written informed consents were obtained from all patients prior to recruitment and sample collection. The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevik, M., Namal, E., Iner-Koksal, U. et al. Association of PD-1 and PDL-1 gene polymorphisms with colorectal cancer risk and prognosis. Mol Biol Rep 49, 1827–1836 (2022). https://doi.org/10.1007/s11033-021-06992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06992-9

Keywords

Navigation