Skip to main content

Advertisement

Log in

MicroRNA expression is deregulated by aberrant methylation in B-cell acute lymphoblastic leukemia mouse model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The expression of microRNAs (miRNAs) in the serum of B-cell acute lymphoblastic leukemia (B-ALL) patients is abnormal. Nevertheless, the underlying mechanism remains unclear. Recent studies indicate that the methylation state of circulating cell-free DNA (cfDNA) is different between cancer patients and healthy individuals. Therefore, we speculate that abnormal expression of miRNA may be associated with cfDNA methylation.

Methods

A green fluorescent protein (GFP) labeled B-ALL transplantation animal model was established to explore the relationship between the miRNA expression and cfDNA methylation of the related gene. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of miRNAs. Further, cfDNA methylation levels of the related genes were evaluated through bisulfite sequencing polymerase chain reaction (BSP).

Results

The expression levels of miR-196b, miR-203, miR-34a-5p, miR-335-3p, miR-34b-5p, miR-615, miR-375-3p and miR-193b-5p in the serum of the model mice were significantly lower than those of the control group (P < 0.05). The methylation level of miR-196b promoter in cfDNA of the model group was significantly lower than that of the control group (P < 0.05), whereas no significant difference was noted in miR-203 promoter. The methylation levels of miR-196b and miR-203 coding region in cfDNA of the model group were significantly higher than those of the control group (P < 0.05).

Conclusions

These results showed that CpG island hypermethylation in the miRNA coding region of cfDNA is related to the low expression of miR-196b and miR-203.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Sun W, Malvar J, Sposto R, Verma A, Wilkes JJ, Dennis R, Heym K, Laetsch TW, Widener M, Rheingold SR et al (2018) Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia 32(11):2316–2325. https://doi.org/10.1038/s41375-018-0094-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li C, Zhao T, Nie L, Zou Y, Zhang Q (2020) MicroRNA-223 decreases cell proliferation, migration, invasion, and enhances cell apoptosis in childhood acute lymphoblastic leukemia via targeting forkhead box O 1. Biosci Rep. https://doi.org/10.1042/BSR20200485

  3. Swellam M, Hashim M, Mahmoud MS, Ramadan A, Hassan NM (2018) Aberrant expression of some circulating miRNAs in childhood acute lymphoblastic leukemia. Biochem Genet 56(4):283–294. https://doi.org/10.1007/s10528-018-9844-y

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki H, Maruyama R, Yamamoto E, Kai M (2012) DNA methylation and microRNA dysregulation in cancer. Mol Oncol 6(6):567–578. https://doi.org/10.1016/j.molonc.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hua X, Tang R, Xu X, Wang Z, Xu Q, Chen L, Wingender E, Li J, Zhang C, Wang J (2018) mirTrans: a resource of transcriptional regulation on microRNAs for human cell lines. Nucleic Acids Res 46(D1):D168–D174. https://doi.org/10.1093/nar/gkx996

    Article  CAS  PubMed  Google Scholar 

  6. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183. https://doi.org/10.1101/gad.1706508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE 4(4):e5279. https://doi.org/10.1371/journal.pone.0005279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang SC, Li AF, Lin PC, Lin CC, Lin HH, Huang SC, Lin CH, Liang WY, Chen WS, Jiang JK et al (2020) Clinicopathological and molecular profiles of sporadic microsatellite unstable colorectal cancer with or without the CpG island methylator phenotype (CIMP). Cancers. https://doi.org/10.3390/cancers12113487

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barchitta M, Maugeri A, Magnano San Lio R, Favara G, La Rosa MC, La Mastra C, Quattrocchi A, Agodi A (2019) Dietary patterns are associated with leukocyte LINE-1 methylation in women: a cross-sectional study in southern Italy. Nutrients. https://doi.org/10.3390/nu11081843

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morales S, Monzo M, Navarro A (2017) Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 8(5–6):203–212. https://doi.org/10.1515/bmc-2017-0024

    Article  CAS  PubMed  Google Scholar 

  11. Gilyazova I, Ivanova E, Gilyazova G, Sultanov I, Izmailov A, Safiullin R, Pavlov V, Khusnutdinova E (2021) Methylation and expression levels of microRNA-23b/-24-1/-27b, microRNA-30c-1/-30e, microRNA-301a and let-7g are dysregulated in clear cell renal cell carcinoma. Mol Biol Rep 48(7):5561–5569. https://doi.org/10.1007/s11033-021-06573-w

    Article  CAS  PubMed  Google Scholar 

  12. Baburaj G, Damerla RR, Udupa KS, Parida P, Munisamy M, Kolesar J, Rao M (2020) Liquid biopsy approaches for pleural effusion in lung cancer patients. Mol Biol Rep 47(10):8179–8187. https://doi.org/10.1007/s11033-020-05869-711

    Article  CAS  PubMed  Google Scholar 

  13. Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ, Anker P (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168. https://doi.org/10.1111/j.1749-6632.2000.tb06608.x

    Article  CAS  PubMed  Google Scholar 

  14. Zeng H, He B, Yi C, Peng J (2018) Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genom 45(4):185–192. https://doi.org/10.1016/j.jgg.2018.02.007

    Article  Google Scholar 

  15. Gao YJ, He YJ, Yang ZL, Shao HY, Zuo Y, Bai Y, Chen H, Chen XC, Qin FX, Tan S, Wang J, Wang L, Zhang L (2010) Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia. Clin Chem Lab Med 48(11):1651–1656. https://doi.org/10.1515/CCLM.2010.311

    Article  CAS  PubMed  Google Scholar 

  16. Luo H, Wei W, Ye Z, Zheng J, Xu RH (2021) Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol Med 27(5):482–500. https://doi.org/10.1016/j.molmed.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  17. Londra D, Mastoraki S, Bournakis E, Zavridou M, Thanos A, Rampias T, Lianidou ES (2021) USP44 promoter methylation in plasma cell-free DNA in prostate cancer. Cancers 13(18):4607. https://doi.org/10.3390/cancers13184607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Zhao D, Yin Y, Yang T, You Z, Li D, Chen Y, Jiang Y, Xu S, Geng J, Zhao Y, Wang J, Li H, Tao J, Lei S, Jiang Z, Chen Z, Yu S, Fan JB, Pang D (2021) Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis. NPJ Breast Cancer 7(1):106. https://doi.org/10.1038/s41523-021-00316-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hlady RA, Zhao X, Pan X, Yang JD, Ahmed F, Antwi SO, Giama NH, Patel T, Roberts LR, Liu C, Robertson KD (2019) Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Theranostics 9(24):7239–7250. https://doi.org/10.7150/thno.35573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu L, Sun L, Li C, Li X, Zhang Y, Yu Y, Xia W (2015) Quantitative detection of methylation of FHIT and BRCA1 promoters in the serum of ductal breast cancer patients. Bio-Med Mater Eng 26(Suppl 1):S2217–S2222. https://doi.org/10.3233/BME-151527

    Article  CAS  Google Scholar 

  21. Hu T, Qi H, Li P, Zhao G, Ma Y, Hao Q, Gao C, Zhang Y, Wang C, Yang M et al (2015) Comparison of GFP-expressing imageable mouse models of human esophageal squamous cell carcinoma established in various anatomical sites. Anticancer Res 35(9):4655–4663

    CAS  PubMed  Google Scholar 

  22. Hoffman RM, Bouvet M (2016) Imaging the microenvironment of pancreatic cancer patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice expressing GFP, RFP, or CFP. Cancer Lett 380(1):349–355. https://doi.org/10.1016/j.canlet.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  23. Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, Holen I (2019) The bone metastasis niche in breast cancer-potential overlap with the hematopoietic stem cell niche in vivo. J Bone Oncol 17:100244. https://doi.org/10.1016/j.jbo.2019.100244

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jalalie L, Rezaie MJ, Jalili A, Rezaee MA, Vahabzadeh Z, Rahmani MR, Karimipoor M, Hakhamaneshi MS (2019) Distribution of the CM-Dil-labeled human umbilical cord vein mesenchymal stem cells migrated to the cyclophosphamide-injured ovaries in C57BL/6 mice. Iran Biomed J 23(3):200–208. https://doi.org/10.29252/.23.3.200

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun YU, Nishino H, Zhao M, Miyake K, Sugisawa N, Yamamoto J, Tashiro Y, Inubushi S, Hamada K, Zhu G et al (2020) A non-invasive Imageable GFP-expressing mouse model of orthotopic human bladder cancer. In Vivo (Athens, Greece) 34(6):3225–3231. https://doi.org/10.21873/invivo.12158

    Article  CAS  Google Scholar 

  26. Xu L, Guo Y, Yan W, Cen J, Niu Y, Yan Q, He H, Chen CS, Hu S (2017) High level of miR-196b at newly diagnosed pediatric acute myeloid leukemia predicts a poor outcome. EXCLI J 16:197–209. https://doi.org/10.17179/excli2016-707

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shafik RE, Abd El Wahab N, Mokhtar MM, El Taweel MA, Ebeid E (2020) Expression of microRNA-181a and microRNA-196b in Egyptian Pediatric acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 21(11):3429–3434. https://doi.org/10.31557/APJCP.2020.21.11.3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhatia S, Kaul D, Varma N (2010) Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem 340(1–2):97–106. https://doi.org/10.1007/s11010-010-0406-9

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zheng W, Song Y, Ma W, Yin H (2013) Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis. PLoS ONE 8(7):e68442. https://doi.org/10.1371/journal.pone.0068442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, Fang WL, Lin WC (2010) Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosom Cancer 49(11):969–980. https://doi.org/10.1002/gcc.20804

    Article  CAS  PubMed  Google Scholar 

  31. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL et al (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113(14):3314–3322. https://doi.org/10.1182/blood-2008-04-154310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP, Pieters R, Den Boer ML (2010) Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 95(10):1675–1682. https://doi.org/10.3324/haematol.2010.023481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Osaily HH, Ibrahim IH, Essawi ML, Salem SM (2021) Impact of miRNAs expression modulation on the methylation status of breast cancer stem cell-related genes. Clin Transl Oncol. https://doi.org/10.1007/s12094-020-02542-0

    Article  PubMed  Google Scholar 

  34. Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY, Yu L (2011) Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 15(12):2760–2767. https://doi.org/10.1111/j.1582-4934.2011.01274.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glaich O, Parikh S, Bell RE, Mekahel K, Donyo M, Leader Y, Shayevitch R, Sheinboim D, Yannai S, Hollander D et al (2019) DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun 10(1):5657. https://doi.org/10.1038/s41467-019-13527-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science Funding of China (Grant No. 81201354), Science and Technology Development Program of Jilin Province (Grant No. 20200403118SF), Suzhou Institute of Biomedical Engineering and Technology (SIBET) of the Chinese Academy of Sciences-Jilin Science and Technology Cooperation Project (Grant No. E055PY03) and Beihua University Graduate Innovation Program (Grant No. 2019-062).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YDW, YHW, HTH, XYF and TQW. The manuscript was written by YDW and reviewed by LML and WX. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Xia or Limei Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This manuscript does not report studies involving human participants. The use of animals and sample collection procedures were in accordance with the ethical standards. Approval was obtained from the Institutional Animal Care and Use Committee of Beihua University.

Informed consent

All authors consent to this manuscript submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Hui, H. et al. MicroRNA expression is deregulated by aberrant methylation in B-cell acute lymphoblastic leukemia mouse model. Mol Biol Rep 49, 1731–1739 (2022). https://doi.org/10.1007/s11033-021-06982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06982-x

Keywords

Navigation