Skip to main content
Log in

The regulatory effects of clomiphene and tamoxifen on mTOR and LC3-II expressions in relation to autophagy in experimental polycystic ovary syndrome (PCOS)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome (PCOS) is a metabolic disease that causes infertility due to anovulation in women in reproductive age. It is known that clomiphene citrate (CC) and tamoxifen citrate (TMX) induce ovulation in women with PCOS. In this study, we aimed to investigate the effects of CC and TMX on the autophagy pathway in PCOS.

Methods and results

Experimental PCOS model was induced by letrozole (1 mg/kg) in rats by gavage for 21 days. After the last letrozole administration, rats were treated TMX (1 mg/kg) or CC (1 mg/kg) for 5 days. At the end of the experimental procedures, rats in all groups were sacrificed and ovarian tissues were removed. It was observed that mRNA and protein expressions of LC3-II were significantly higher in TMX and CC groups than control and PCOS groups (p < 0.05), while mRNA and protein expressions of mTOR in TMX and CC groups were found significantly lower than control and PCOS groups (p < 0.05).

Conclusions

In conclusion, present study suggests that TMX and CC induce autophagy in ovaries with PCOS. Autophagy is a promising target for understanding pathophysiology of this disease and for developing more effective and safe new protocols for the treatment of PCOS-related anovulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Patil K, Yelamanchi S, Kumar M et al (2019) Quantitative mass spectrometric analysis to unravel glycoproteomic signature of follicular fluid in women with polycystic ovary syndrome. PLoS ONE 14:e0214742. https://doi.org/10.1371/journal.pone.0214742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kobayashi M, Yoshino O, Nakashima A et al (2020) Inhibition of autophagy in theca cells induces CYP17A1 and PAI-1 expression via ROS/p38 and JNK signalling during the development of polycystic ovary syndrome. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2020.110792

    Article  PubMed  Google Scholar 

  3. Costello MF, Misso ML, Balen A et al (2019) Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: assessment and treatment of infertility. Hum Reprod Open. https://doi.org/10.1093/hropen/hoy021

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takasaki A, Tamura I, Okada-Hayashi M et al (2018) Usefulness of intermittent clomiphene citrate treatment for women with polycystic ovarian syndrome that is resistant to standard clomiphene citrate treatment. Reprod Med Biol 17:454–458. https://doi.org/10.1002/rmb2.12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balen AH (2013) Ovulation induction in the management of anovulatory polycystic ovary syndrome. Mol Cell Endocrinol 373:77–82. https://doi.org/10.1016/j.mce.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  6. L W, S L, F L, et al. (2021) Letrozole versus clomiphene citrate and natural cycle: endometrial receptivity during implantation window in women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 11 https://doi.org/10.3389/FENDO.2020.532692

  7. Badawy A, Gibreal A (2011) Clomiphene citrate versus tamoxifen for ovulation induction in women with PCOS: a prospective randomized trial. Eur J Obstet Gynecol Reprod Biol 159:151–154. https://doi.org/10.1016/j.ejogrb.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  8. Xu X-L, Deng S-L, Lian Z-X, Yu K (2021) Estrogen receptors in polycystic ovary syndrome. Cells 10:459. https://doi.org/10.3390/CELLS10020459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tremont A, Lu J, Cole JT (2017) Endocrine therapy for early breast cancer: updated review. Ochsner J 17:405

    PubMed  PubMed Central  Google Scholar 

  10. Heery M, Corbett P, Zelkowitz R (2018) Precautions for patients taking tamoxifen. J Adv Pract Oncol 9:78–83

    PubMed  PubMed Central  Google Scholar 

  11. Torres-López L, Maycotte P, Liñán-Rico A et al (2019) Tamoxifen induces toxicity, causes autophagy, and partially reverses dexamethasone resistance in Jurkat T cells. J Leukoc Biol 105:1–16. https://doi.org/10.1002/JLB.2VMA0818-328R

    Article  CAS  Google Scholar 

  12. Das CK, Parekh A, Parida PK et al (2019) Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta - Mol Cell Res 1866:1004–1018. https://doi.org/10.1016/j.bbamcr.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  13. Xu G, Wang X, Yu H et al (2019) Beclin 1, LC3, and p62 expression in paraquat-induced pulmonary fibrosis. Hum Exp Toxicol. https://doi.org/10.1177/0960327119842633

    Article  PubMed  Google Scholar 

  14. Bishop E, Bradshaw TD (2018) Autophagy modulation: a prudent approach in cancer treatment? Cancer Chemother Pharmacol 82:913–922. https://doi.org/10.1007/s00280-018-3669-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He X, Chen S-Y, Yang Z et al (2018) miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J Exp Clin Cancer Res 37:1–16. https://doi.org/10.1186/s13046-018-0882-4

    Article  CAS  Google Scholar 

  16. Riffelmacher T, Simon A-K (2017) Mechanistic roles of autophagy in hematopoietic differentiation. FEBS J 284:1008–1020. https://doi.org/10.1111/febs.13962

    Article  CAS  PubMed  Google Scholar 

  17. Kocaturk NM, Akkoc Y, Kig C et al (2019) Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2019.04.011

    Article  PubMed  Google Scholar 

  18. Paquette M, El-Houjeiri L, Pause A (2018) mTOR pathways in cancer and autophagy. Cancers (Basel) 10:18. https://doi.org/10.3390/cancers10010018

    Article  CAS  Google Scholar 

  19. Lee Y-K, Lee J-A (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430. https://doi.org/10.5483/BMBREP.2016.49.8.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1865. https://doi.org/10.3390/IJMS18091865

    Article  PubMed Central  Google Scholar 

  21. Runwal G, Stamatakou E, Siddiqi FH et al (2019) LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep 91(9):1–14. https://doi.org/10.1038/s41598-019-46657-z

    Article  CAS  Google Scholar 

  22. Lee M-OM-H, Koh D, Na H et al (2018) MTA1 is a novel regulator of autophagy that induces tamoxifen resistance in breast cancer cells. Autophagy 14:812. https://doi.org/10.1080/15548627.2017.1388476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jahan S, Abid A, Khalid S et al (2018) Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res 11:26. https://doi.org/10.1186/s13048-018-0400-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oktem G, Uysal A, Oral O et al (2012) Resveratrol attenuates doxorubicin-induced cellular damage by modulating nitric oxide and apoptosis. Exp Toxicol Pathol 64:471–479. https://doi.org/10.1016/j.etp.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Gurel C, Kuscu GC, Buhur A et al (2019) Fluvastatin attenuates doxorubicin-induced testicular toxicity in rats by reducing oxidative stress and regulating the blood-testis barrier via mTOR signaling pathway. Hum Exp Toxicol 38:1329–1343. https://doi.org/10.1177/0960327119862006

    Article  CAS  PubMed  Google Scholar 

  26. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85. https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted

    Article  PubMed  PubMed Central  Google Scholar 

  27. Drummond MJ, Glynn EL, Lujan HL et al (2008) Gene and protein expression associated with protein synthesis and breakdown in paraplegic skeletal muscle. Muscle Nerve 37:505–513. https://doi.org/10.1002/mus.20976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ni H, Gong Y, Yan J-Z, Zhang L-L (2010) Autophagy inhibitor 3-methyladenine regulates the expression of LC3, Beclin-1 and ZnTs in rat cerebral cortex following recurrent neonatal seizures. World J Emerg Med 1:216–223

    CAS  PubMed  PubMed Central  Google Scholar 

  29. A W-J, K K, P T, et al. (2020) In search of new therapeutics-molecular aspects of the PCOS pathophysiology: genetics, hormones, metabolism and beyond. Int J Mol Sci 21:1–24https://doi.org/10.3390/IJMS21197054

  30. Liu Y, Zhai J, Chen J et al (2019) PGC-1α protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway. Hum Cell. https://doi.org/10.1007/s13577-019-00252-6

    Article  PubMed  Google Scholar 

  31. Ibrahim MAA, Sadek MT, Sharaf Eldin HEM (2021) Role of pomegranate extract in restoring endometrial androgen receptor expression, proliferation, and pinopodes in a rat model of polycystic ovary syndrome. Morphologie. https://doi.org/10.1016/J.MORPHO.2021.04.004

    Article  PubMed  Google Scholar 

  32. Dai G, Lu G (2012) Different protein expression patterns associated with polycystic ovary syndrome in human follicular fluid during controlled ovarian hyperstimulation. Reprod Fertil Dev 24:893. https://doi.org/10.1071/RD11201

    Article  CAS  PubMed  Google Scholar 

  33. Bai S, Tian B, Li A et al (2016) MicroRNA-125b promotes tumor growth and suppresses apoptosis by targeting DRAM2 in retinoblastoma. Eye (London) 30:1630–1638. https://doi.org/10.1038/eye.2016.189

    Article  CAS  Google Scholar 

  34. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545. https://doi.org/10.4161/auto.4600

    Article  CAS  PubMed  Google Scholar 

  35. Sumarac-Dumanovic M, Apostolovic M, Janjetovic K et al (2017) Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol Cell Endocrinol 440:116–124. https://doi.org/10.1016/j.mce.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  36. Li D, You Y, Bi F-F et al (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155:85–92. https://doi.org/10.1530/REP-17-0499

    Article  CAS  PubMed  Google Scholar 

  37. Al-Bari MAA, Xu P (2020) Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci 1467:3–20. https://doi.org/10.1111/nyas.14305

    Article  CAS  PubMed  Google Scholar 

  38. Oltulu F, Kocatürk DÇD, Adalı Y et al (2019) Autophagy and mTOR pathways in mouse embryonic stem cell, lung cancer and somatic fibroblast cell lines. J Cell Biochem 120:18066–18076. https://doi.org/10.1002/jcb.29110

    Article  CAS  PubMed  Google Scholar 

  39. Song X, Shen Q, Fan L et al (2018) Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome. Oncotarget 9:11905–11921. https://doi.org/10.18632/oncotarget.24190

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Z, Wei H, Zhao X et al (2019) Metformin treatment alleviates polycystic ovary syndrome by decreasing the expression of MMP-2 and MMP-9 via H19/miR-29b-3p and AKT/mTOR/autophagy signaling pathways. J Cell Physiol 234:19964–19976. https://doi.org/10.1002/jcp.28594

    Article  CAS  PubMed  Google Scholar 

  41. Bednarska S, Siejka A (2017) The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med 26:359–367. https://doi.org/10.17219/acem/59380

    Article  PubMed  Google Scholar 

  42. El Sharkwy I, Sharaf El-Din M (2019) l -Carnitine plus metformin in clomiphene-resistant obese PCOS women, reproductive and metabolic effects: a randomized clinical trial. Gynecol Endocrinol. https://doi.org/10.1080/09513590.2019.1576622

    Article  PubMed  Google Scholar 

  43. Ayaz A, Alwan Y, Farooq MU (2013) Metformin-clomiphene citrate vs. clomiphene citrate alone: polycystic ovarian syndrome. J Hum Reprod Sci 6:15–18. https://doi.org/10.4103/0974-1208.112372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhaliwal LK, Suri V, Gupta KR et al (2011) Tamoxifen: an alternative to clomiphene in women with polycystic ovary syndrome. J Hum Reprod Sci 4:76. https://doi.org/10.4103/0974-1208.86085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Legro RS, Kunselman AR, Brzyski RG et al (2012) The pregnancy in polycystic ovary syndrome II (PPCOS II) trial: rationale and design of a double-blind randomized trial of clomiphene citrate and letrozole for the treatment of infertility in women with polycystic ovary syndrome. Contemp Clin Trials 33:470–481. https://doi.org/10.1016/j.cct.2011.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nardo LG (2004) Management of anovulatory infertility associated with polycystic ovary syndrome: tamoxifen citrate an effective alternative compound to clomiphene citrate. Gynecol Endocrinol 19:235–238

    Article  CAS  Google Scholar 

  47. Ghafourzadeh M, Karimi M, Karimazadeh MA, Bokai M (2004) Comparison between two methods of ovulation induction: clomiphene alone and clomiphene+tamoxifen in PCOS patients. Iran J Reprod Med 2:74–77

    Google Scholar 

  48. Graham CD, Kaza N, Klocke BJ et al (2016) Tamoxifen induces cytotoxic autophagy in glioblastoma. J Neuropathol Exp Neurol 75:946–954. https://doi.org/10.1093/jnen/nlw071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hwang JJ, Kim HN, Kim J et al (2010) Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23:997–1013. https://doi.org/10.1007/s10534-010-9346-9

    Article  CAS  PubMed  Google Scholar 

  50. Cho KS, Yoon YH, Choi JA et al (2012) Induction of autophagy and cell death by tamoxifen in cultured retinal pigment epithelial and photoreceptor cells. Investig Opthalmology Vis Sci 53:5344. https://doi.org/10.1167/iovs.12-9827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Gürkan Yiğittürk and Ege University, Drug Research and Development and Pharmacokinetic Applications (ARGEFAR).

Funding

This study was supported by the Ege University Research Fund [Grant number BAP-17-TIP-029 (to Altuğ Yavaşoğlu)].

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by AY and GCK. Histochemical and immunohistochemical staining were performed by FO, GCK and AB. Real-Time PCR was performed by ÇG and NUKY. LA, ÇG, and GCK contributed to the data collection. Statistical analysis was performed by TK. All authors contributed to the writing of the manuscript. AY are responsible for supervising of the manuscript.

Corresponding author

Correspondence to Nefise Ülkü Karabay Yavaşoğlu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Consent to participate

All authors have given permission to participate in this publication.

Consent for publication

The publication is approved by all Authors.

Ethical approval

The protocol was approved by Ege University, Local Ethics Committee for Animal Experiments (Approval no: 2017-006).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuşçu, G.C., Gürel, Ç., Buhur, A. et al. The regulatory effects of clomiphene and tamoxifen on mTOR and LC3-II expressions in relation to autophagy in experimental polycystic ovary syndrome (PCOS). Mol Biol Rep 49, 1721–1729 (2022). https://doi.org/10.1007/s11033-021-06981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06981-y

Keywords

Navigation