Skip to main content
Log in

Exosomal miR-19a decreases insulin production by targeting Neurod1 in pancreatic cancer associated diabetes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

New onset diabetes mellitus demonstrates a roughly correlation with pancreatic cancer (PaC), which is unique in PaC and was named as PaC-induced DM, but the inner mechanism remains unclear. Exosomes mediate intercellular communication and bearing microRNAs might be direct constituent of effect in target cells.

Methods and results

The isolated exosomes from PaC cells were used to treat pancreatic β cells or the primary mice islets, and the glucose stimulated insulin secretions were measured. We validated the exosomal miR-19a from PaC cells to be an important mediator in the down regulation of insulin secretion by targeting Neurod1, the validated gene involved in insulin secretion, by using the quantitative real-time PCR, western blot, and promoter luciferase activity. The relative insulin, cAMP and Ca2+ expressions were also assayed to verify the inverse correlation between cancerous miR-19a and pancreatic islets Neurod1.

Conclusions

Our study indicated that signal changes between cancer cells and β cells via exosomes might be important in the pathogenesis of PaC-induced DM and supplemented the pathogenesis of PaC-induced DM and provide a possible access of PaC screening strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aggarwal G, Kamada P, Chari ST (2013) Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas 42(2):198–201

    Article  Google Scholar 

  2. Pannala R et al (2008) Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134(4):981–987

    Article  CAS  Google Scholar 

  3. Singhi AD et al (2019) Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology 156(7):2024–2040

    Article  Google Scholar 

  4. Yoon BH et al (2021) Pancreatic cancer-associated diabetes is clinically distinguishable from conventional diabetes. J Surg Res 261:215–225

    Article  CAS  Google Scholar 

  5. Pereira SP et al (2020) Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol 5(7):698–710

    Article  Google Scholar 

  6. Chen W et al (2021) Validation of the enriching new-onset diabetes for pancreatic cancer model in a diverse and integrated healthcare setting. Dig Dis Sci 66(1):78–87

    Article  Google Scholar 

  7. Xia T, Chen XY, Zhang YN (2021) MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem. https://doi.org/10.1007/s11010-021-04233-y

    Article  PubMed  Google Scholar 

  8. Wang X et al (2021) Effects of CAF-derived microRNA on tumor biology and clinical applications. Cancers (Basel) 13(13):3160

    Article  Google Scholar 

  9. Dai X et al (2015) Altered profile of serum microRNAs in pancreatic cancer associated new-onset diabetes mellitus. J Diabetes 8:422

    Article  Google Scholar 

  10. Thakur A et al (2021) The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell. https://doi.org/10.1007/s13238-021-00863-6

    Article  PubMed  Google Scholar 

  11. Zhao Z et al (2021) The significance of exosomal RNAs in the development, diagnosis, and treatment of pancreatic cancer. Cancer Cell Int 21(1):364

    Article  Google Scholar 

  12. Pang W et al (2021) Pancreatic cancer-derived exosomal microRNA-19a induces beta-cell dysfunction by targeting ADCY1 and EPAC2. Int J Biol Sci 17(13):3622–3633

    Article  CAS  Google Scholar 

  13. Chen X et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392

    Article  CAS  Google Scholar 

  14. Lewis BP et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  Google Scholar 

  15. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  Google Scholar 

  16. John B et al (2004) Human microRNA targets. PLoS Biol 2(11):e363

    Article  Google Scholar 

  17. Rehmsmeier M et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Article  CAS  Google Scholar 

  18. Zhang Y et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  CAS  Google Scholar 

  19. Aggarwal G et al (2012) Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology 143(6):1510–15171

    Article  CAS  Google Scholar 

  20. Hart PA et al (2021) Distinguishing diabetes secondary to pancreatic diseases from type 2 diabetes mellitus. Curr Opin Gastroenterol 37(5):520–525

    Article  CAS  Google Scholar 

  21. Nakanishi N et al (2009) The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 385(4):492–496

    Article  CAS  Google Scholar 

  22. Chae JH, Stein GH, Lee JE (2004) NeuroD: the predicted and the surprising. Mol Cells 18(3):271–288

    CAS  PubMed  Google Scholar 

  23. Aramata S et al (2005) Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim Biophys Acta 1730(1):41–46

    Article  CAS  Google Scholar 

  24. Ono Y, Kataoka K (2021) MafA, NeuroD1, and HNF1beta synergistically activate the Slc2a2 (Glut2) gene in beta-cells. J Mol Endocrinol 67(3):71–82

    Article  CAS  Google Scholar 

  25. Zhang ZW et al (2011) MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett 585(16):2592–2598

    Article  CAS  Google Scholar 

  26. Horikawa Y, Enya M (2019) Genetic dissection and clinical features of MODY6 (NEUROD1-MODY). Curr Diabetes Rep 19(3):12

    Article  Google Scholar 

  27. Yin Y et al (2014) Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 24(10):1164–1180

    Article  CAS  Google Scholar 

  28. Wang Y et al (2021) Decreased inhibition of exosomal miRNAs on SARS-CoV-2 replication underlies poor outcomes in elderly people and diabetic patients. Signal Transduct Target Ther 6(1):300

    Article  CAS  Google Scholar 

  29. Zhou LK et al (2020) Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov 6:54

    Article  CAS  Google Scholar 

  30. Chen Q et al (2020) SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res 31:247

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (81802304/H1617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Pang or Xin Dai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Pang, W., Zhang, A. et al. Exosomal miR-19a decreases insulin production by targeting Neurod1 in pancreatic cancer associated diabetes. Mol Biol Rep 49, 1711–1720 (2022). https://doi.org/10.1007/s11033-021-06980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06980-z

Keywords

Navigation