Skip to main content

Advertisement

Log in

Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Comprehensive genomic analysis of paired primary tumors and their metastatic lesions may provide new insights into the biology of metastatic processes and therefore guide the development of novel strategies for intervention. To date, our knowledge of the genetic divergence and phylogenetic relationships in gallbladder cancer (GBC) is limited.

Methods

We performed whole exome sequencing for 5 patients with primary tumor, metastatic lymph node (LNM) and corresponding normal tissue. Mutations, mutation signatures and copy number variations were analyzed with state-of-art bioinformatics methods. Phylogenetic tree was also generated to infer metastatic pattern.

Results

Five driver mutations were detected in these patients. Among which, TP53 was the only shared mutation between primary tumor and LNM. Although tumor mutational burden was comparable between primary tumor and LNM, higher mutation burden was observed in LNM of one patient. Copy number variations (CNVs) burden was higher in LNM than their primary tumor. Phylogenetic analysis indicated both linear and parallel progression of metastasis exist in these patients. TP53 mutation and CNVs were homogenously between primary tumor and LNM.

Conclusions

High consistence of genetic landscape were shown between primary tumor and LNM in GBC. However, heterogenicity still exist between primary tumor and LNM in particular patients in term of driver mutation, TMB and CNV burden. Phylogenetic analysis indicated both Linear and parallel progression of metastasis were exist among these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All raw data is available, and is ready to share.

Code availability

All the software used in this manuscript is available online, and there is no custom code.

References

  1. Duffy A et al (2008) Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Centre (MSKCC). J Surg Oncol 98(7):485–489

    Article  CAS  PubMed  Google Scholar 

  2. Bray FI et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68(6):394–424

    Google Scholar 

  3. Schmidt MA, Marcano-Bonilla L, Roberts LR (2019) Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol 8(4):2

    Article  Google Scholar 

  4. Lai CHE, Lau WY (2008) Gallbladder cancer—a comprehensive review. Surg 6(2):101–110

    Google Scholar 

  5. Kanthan R et al (2015) Gallbladder cancer in the 21st century. J Oncol 2015:967472

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin J et al (2019) Precision oncology for gallbladder cancer: insights from genetic alterations and clinical practice. Ann Transl Med 7(18):44

    Article  Google Scholar 

  7. Haber PK, Sia D (2019) Translating cancer genomics for precision oncology in biliary tract cancers. Discov Med 28(155):255–265

    PubMed  Google Scholar 

  8. Valle JW et al (2017) New horizons for precision medicine in biliary tract cancers. Cancer Discov 7(9):943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M et al (2014) Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 46(8):872–876

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura H et al (2015) Genomic spectra of biliary tract cancer. Nat Genet 47(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  11. Jiao Y et al (2013) Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 45(12):1470–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L et al (2020) Genetic heterogeneity between paired primary and brain metastases in lung adenocarcinoma. Clin Med Insights Oncol 14:1179554920947335

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang T et al (2020) Mutational landscape and evolutionary pattern of liver and brain metastasis in lung adenocarcinoma. J Thorac Oncol 16:237–249

    Article  PubMed  Google Scholar 

  14. Li C et al (2019) Mutational landscape of primary, metastatic, and recurrent ovarian cancer reveals c-MYC gains as potential target for BET inhibitors. Proc Natl Acad Sci USA 116(2):619–624

    Article  CAS  PubMed  Google Scholar 

  15. Ng CKY et al (2017) Genetic heterogeneity in therapy-naïve synchronous primary breast cancers and their metastases. Clin Cancer Res 23(15):4402–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai W et al (2017) Whole-exome sequencing reveals critical genes underlying metastasis in oesophageal squamous cell carcinoma. J Pathol 242(4):500–510

    Article  CAS  PubMed  Google Scholar 

  17. Ouyang L et al (2014) Whole-genome sequencing of matched primary and metastatic hepatocellular carcinomas. BMC Med Genomics 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alexandrov LB et al (2015) Clock-like mutational processes in human somatic cells. Nat Genet 47(12):1402–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reiter JG et al (2017) Reconstructing metastatic seeding patterns of human cancers. Nat Commun 8:14114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu Z et al (2020) Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet 52(7):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Talevich E et al (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12(4):e1004873–e1004873

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349(6255):1483–1489

    Article  CAS  PubMed  Google Scholar 

  25. Poulos RC, Wong JWH (2019) Finding cancer driver mutations in the era of big data research. Biophys Rev 11(1):21–29

    Article  CAS  PubMed  Google Scholar 

  26. Martincorena I et al (2017) Universal patterns of selection in cancer and somatic tissues. Cell 171(5):1029-1041.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerlinger M et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turajlic S, McGranahan N, Swanton C (2015) Inferring mutational timing and reconstructing tumour evolutionary histories. Biochim Biophys Acta 1855(2):264–275

    CAS  PubMed  Google Scholar 

  30. Hong WS, Shpak M, Townsend JP (2015) Inferring the origin of metastases from cancer phylogenies. Cancer Res 75(19):4021–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wardell CP et al (2018) Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 68(5):959–969

    Article  CAS  PubMed  Google Scholar 

  32. Lamarca A et al (2020) Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol 73(1):170–185

    Article  CAS  PubMed  Google Scholar 

  33. Athauda A et al (2020) Broadening the therapeutic horizon of advanced biliary tract cancer through molecular characterisation. Cancer Treat Rev 86:101998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldstein D, Lemech C, Valle J (2017) New molecular and immunotherapeutic approaches in biliary cancer. ESMO Open 2(Suppl 1):e000152

    Article  PubMed  PubMed Central  Google Scholar 

  35. Javle M et al (2016) Biliary cancer: utility of next-generation sequencing for clinical management. Cancer 122(24):3838–3847

    Article  CAS  PubMed  Google Scholar 

  36. Xu S et al (2019) Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 10(1):5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reiter JG et al (2019) An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 19(11):639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei Q et al (2017) Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis. Ann Oncol 28(9):2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19(11):1450–1464

    Article  CAS  PubMed  Google Scholar 

  40. Lamarca A et al (2020) Current standards and future perspectives in adjuvant treatment for biliary tract cancers. Cancer Treat Rev 84:101936

    Article  CAS  PubMed  Google Scholar 

  41. Mehrotra R et al (2018) Genetic landscape of gallbladder cancer: global overview. Mutat Res-Rev Mutat Res 778:61–71

    Article  CAS  PubMed  Google Scholar 

  42. Sylvester BE, Vakiani E (2015) Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases. J Gastrointest Oncol 6(6):668–675

    PubMed  PubMed Central  Google Scholar 

  43. Lee SY et al (2014) Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS One 9(3):e90459

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barroso-Sousa R et al (2020) Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res 26(11):2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McNamara MG et al (2020) Impact of high tumor mutational burden in solid tumors and challenges for biomarker application. Cancer Treat Rev 89:102084

    Article  CAS  PubMed  Google Scholar 

  47. Hatakeyama K et al (2018) Tumor mutational burden analysis of 2,000 Japanese cancer genomes using whole exome and targeted gene panel sequencing. Biomed Res 39(3):159–167

    Article  CAS  PubMed  Google Scholar 

  48. Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang D et al (2019) Multiregion sequencing reveals the genetic heterogeneity and evolutionary history of osteosarcoma and matched pulmonary metastases. Cancer Res 79(1):7–20

    Article  CAS  PubMed  Google Scholar 

  50. Hallam S et al (2020) The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with an increased tumour mutational burden. Sci Rep 10(1):18900

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robinson D et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161(5):1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Campbell PJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yates LR et al (2015) Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 21(7):751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Priedigkeit N et al (2017) Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA Oncol 3(5):666–671

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hosseini H et al (2016) Early dissemination seeds metastasis in breast cancer. Nature 540(7634):552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y et al (2020) A predictive nomogram for lymph node metastasis of incidental gallbladder cancer: a SEER population-based study. BMC Cancer 20(1):828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding for current work.

Author information

Authors and Affiliations

Authors

Contributions

XFX and BQF performed WES, critical data analyses, interpretation of results and wrote the manuscript. XFX performed DNA extraction, analyzed the data and carried out statistical analyses. BQF contributed samples and analyzed clinical data. BQF and XHW designed, implemented the study, wrote and critically reviewed the manuscript. This is to confirm that all authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuehao Wang.

Ethics declarations

Conflict of interest

There is no conflicts of interest for all authors.

Ethical approval

Since this is an retrospective diagnostic study, no previous agreement from our Ethical Committee was obtained.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human and animal participants

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Xu, X. & Wang, X. Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer. Mol Biol Rep 49, 1295–1301 (2022). https://doi.org/10.1007/s11033-021-06957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06957-y

Keywords

Navigation