Skip to main content
Log in

Immunotherapeutic role of cabazitaxel treatment in the activation of TLR3 signalling in metastatic castration-resistant prostate cancer in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The activation of toll like receptors (TLR) potentially affect the inflammatory tumor microenvironment and thus is associated with tumor growth or inhibition. Cabazitaxel (CAB) has been effectively used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, the immune regulatory role of CAB in the tumor microenvironment is not clear. In this context, we for the first time assessed the immunotherapeutic role of CAB in the TLR3 signalling following activation of Poly I:C in mCRPC cells.

Methods and results

The cytotoxic and apoptotic effects of CAB with the induction of Poly I:C were determined by WST-1, Annexin V, acridine orange, RT-PCR analysis, ELISA assay and immunofluorescence staining in DU-145 mCRPC and HUVEC control cells. Our findings showed that CAB treatment with Poly I:C significantly suppressed the proliferation of DU-145 cells through the induction of apoptosis and caspase activation. Additionally, higher concentration of CAB mediated the activation of TLR3 via increased cytoplasmic and nuclear expression of TLR3, TICAM-1 and IRF-3 in mCRPC cells.

Conclusions

Co-treatment of CAB and Poly I:C was more effective in mCRPC cells with less toxicity in control cells. However, further investigations are required to elucidate the molecular mechanisms of TLRs signalling upon CAB treatment at the molecular level to further validate the immunotherapeutic efficacy of CAB in mCRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    PubMed  Google Scholar 

  2. Zhang TY, Agarwal N, Sonpavde G, DiLorenzo G, Bellmunt J, Vogelzang NJ (2013) Management of castrate resistant prostate cancer-recent advances and optimal sequence of treatments. Curr Urol Rep 14(3):174–183

    PubMed  Google Scholar 

  3. Yap TA, Pezaro CJ, de Bono JS (2012) Cabazitaxel in metastatic castration-resistant prostate cancer. Expert Rev Anticancer Ther 12(9):1129–1136

    CAS  PubMed  Google Scholar 

  4. Lam JS, Leppert JT, Vemulapalli SN, Shvarts O, Belldegrun AS (2006) Secondary hormonal therapy for advanced prostate cancer. J Urol 175(1):27–34

    CAS  PubMed  Google Scholar 

  5. Fojo AT, Menefee M (2005) Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin Oncol 32(6 Suppl 7):S3–S8

    CAS  PubMed  Google Scholar 

  6. Galletti G, Matov A, Beltran H, Fontugne J, Miguel Mosquera J, Cheung C et al (2014) ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun 5:5548

    CAS  PubMed  Google Scholar 

  7. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376(9747):1147–1154

    PubMed  Google Scholar 

  8. Diéras V, Lortholary A, Laurence V, Delva R, Girre V, Livartowski A et al (2013) Cabazitaxel in patients with advanced solid tumours: results of a Phase I and pharmacokinetic study. Eur J Cancer 49(1):25–34

    PubMed  Google Scholar 

  9. Mita AC, Denis LJ, Rowinsky EK, Debono JS, Goetz AD, Ochoa L et al (2009) Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 15(2):723–730

    CAS  PubMed  Google Scholar 

  10. Vrignaud P, Semiond D, Benning V, Beys E, Bouchard H, Gupta S (2014) Preclinical profile of cabazitaxel. Drug Des Devel Ther 8:1851–1867

    PubMed  PubMed Central  Google Scholar 

  11. Bourre L, Nicolle D, Legrier M-E et al (2012) Evaluation of the response to cabazitaxel of a docetaxel-responsive hormone-refractory prostate tumor xenograft model (HID28). In: American Society of Clinical Oncology Annual Meeting. Chicago, June 1–5, Abstract e15161

  12. Vrignaud P, Sémiond D, Lejeune P, Bouchard H, Calvet L, Combeau C et al (2013) Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res 19(11):2973–2983

    CAS  PubMed  Google Scholar 

  13. Bansal D, Reimers MA, Knoche EM, Pachynski RK (2021) Immunotherapy and immunotherapy combinations in metastatic castration-resistant prostate cancer. Cancers (Basel) 13(2):334

    CAS  Google Scholar 

  14. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015

  15. Kuo WT, Lee TC, Yu LC (2016) Eritoran suppresses colon cancer by altering a functional balance in toll-like receptors that bind lipopolysaccharide. Cancer Res 76(16):4684–4695

    CAS  PubMed  Google Scholar 

  16. Prakash H, Nadella V, Singh S, Schmitz-Winnenthal H (2016) CD14/TLR4 priming potentially recalibrates and exerts anti-tumor efficacy in tumor associated macrophages in a mouse model of pancreatic carcinoma. Sci Rep 6:31490

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Llitjos JF, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N ry al (2016) Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4. J Pathol 239(4):473–483

    CAS  PubMed  Google Scholar 

  18. Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D (2014) Toll-like receptors and prostate cancer. Front Immunol 5:352

    PubMed  PubMed Central  Google Scholar 

  19. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    CAS  PubMed  Google Scholar 

  20. Paone A, Galli R, Gabellini C, Lukashev D, Starace D, Gorlach A, De Cesaris P et al (2010)Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia 12(7):539–549. https://doi.org/10.1593/neo.92106

  21. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M (2012) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61(5):667–676

    CAS  PubMed  Google Scholar 

  22. Braunstein MJ, Kucharczyk J, Adams S (2018) Targeting toll-like receptors for cancer therapy. Target Oncol 13(5):583–598

    PubMed  Google Scholar 

  23. Paone A, Starace D, Galli R et al (2008) Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-alpha-dependent mechanism. Carcinogenesis 29(7):1334–1342

    CAS  PubMed  Google Scholar 

  24. Guney Eskiler G, Ozkan AD, Eryilmaz IE, Egeli U, Cecener G (2021) Association between the anticancer efficacy of cabazitaxel and toll-like receptor 4 mediating signaling pathways in metastatic castration-resistant prostate cancer cells. Hum Exp Toxicol 40(7):1122–1129

    CAS  PubMed  Google Scholar 

  25. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66(7):3859–3868

    CAS  PubMed  Google Scholar 

  26. Wang AC, Ma YB, Wu FX, Ma ZF, Liu NF, Gao R et al (2014) TLR4 induces tumor growth and inhibits paclitaxel activity in MyD88-positive human ovarian carcinoma in vitro. Oncol Lett 7(3):871–877. https://doi.org/10.3892/ol.2013.1759

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Guan M, Wong PF, Yu H, Dong J, Xu J (2012) Icariside II potentiates paclitaxel-induced apoptosis in human melanoma A375 cells by inhibiting TLR4 signaling pathway. Food Chem Toxicol 50(9):3019–3024

    CAS  PubMed  Google Scholar 

  28. Mallick P, Basu S, Moorthy B et al (2017) Role of Toll-like receptor 4 in drug-drug interaction between paclitaxel and irinotecan in vitro. Toxicol In Vitro 41:75–82

  29. Ozkan AD, Sarihan M, Kaleli S (2021) Evaluation of the effects of nobiletin on toll-like receptor 3 signaling pathways in prostate cancer in vitro. Nutr Cancer 73(7):1138–1144

    CAS  PubMed  Google Scholar 

  30. Weber A, Kirejczyk Z, Besch R, Potthoff S, Leverkus M, Häcker G (2010) Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ 17(6):942–951

    CAS  PubMed  Google Scholar 

  31. Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B et al (2012) dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death Differ 19(9):1482–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Estornes Y, Micheau O, Renno T et al (2013) Dual role of TLR3 in inflammation and cancer cell apoptosis. In: Siregar Y (ed) Oncogene and cancer - from bench to clinic. Novi Sad (Croatia). INTECH 247-70

  33. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176(8):4894–4901

    CAS  PubMed  Google Scholar 

  34. Bianchi F, Alexiadis S, Camisaschi C, Truini M, Centonze G, Milione M et al (2020) TLR3 expression induces apoptosis in human non-small-cell lung cancer. Int J Mol Sci 21(4):1440

    CAS  PubMed Central  Google Scholar 

  35. Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L (2017) Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 18(10):747–756

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin L, Cai W, Liang Y, Yao J, Wang X, Shen J (2020) In situ self-assembly of Au-antimiR-155 nanocomplexes mediates TLR3-dependent apoptosis in hepatocellular carcinoma cells. Aging 13(1):241–261

    PubMed  PubMed Central  Google Scholar 

  37. Aragon-Ching JB, Dahut WL (2007) Chemotherapy in Androgen-Independent Prostate Cancer (AIPC): what’s next after taxane progression? Cancer Ther 5A(A):151–160

    PubMed  Google Scholar 

  38. Nader R, El Amm J, Aragon-Ching JB (2018) Role of chemotherapy in prostate cancer. Asian J Androl 20(3):221–229

    CAS  PubMed  Google Scholar 

  39. Sartor AO, Oudard S, Sengelov L et al (2016) Cabazitaxel vs. docetaxel in chemotherapy-naive (CN) patients with metastatic castration-resistant prostate cancer (mCRPC): a three-arm phase III study (FIRSTANA). J Clin Oncol 34 abstr 5006

  40. Resman N, Gradisar H, Vasl J, Keber MM, Pristovsek P, Jerala R (2008) Taxanes inhibit human TLR4 signaling by binding to MD-2. FEBS Lett 582(28):3929–3934

    CAS  PubMed  Google Scholar 

  41. Sootichote R, Thuwajit P, Singsuksawat E, Warnnissorn M, Yenchitsomanus PT, Ithimakin S et al (2018) Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 18(1):231

    PubMed  PubMed Central  Google Scholar 

  42. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9

    CAS  PubMed  Google Scholar 

  43. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H et al (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424(6948):516–523

    CAS  PubMed  Google Scholar 

  44. Kaiser WJ, Kaufman JL, Offermann MK (2004) IFN-alpha sensitizes human umbilical vein endothelial cells to apoptosis induced by double-stranded RNA. J Immunol 172(3):1699–1710

    CAS  PubMed  Google Scholar 

  45. Sekino Y, Han X, Kawaguchi T, Babasaki T, Goto K, Inoue S et al (2019) TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. Int J Mol Sci 20(16):3936

    CAS  PubMed Central  Google Scholar 

  46. Carbonetti G, Converso C, Clement T, Wang C, Trotman LC, Ojima I et al (2020) Docetaxel/cabazitaxel and fatty acid binding protein 5 inhibitors produce synergistic inhibition of prostate cancer growth. Prostate 80(1):88–98

    CAS  PubMed  Google Scholar 

  47. Dyshlovoy SA, Pelageev DN, Jakob LS, Borisova KL, Hauschild J, Busenbender T et al (2021) Activity of new synthetic (2-chloroethylthio)-1,4-naphthoquinones in prostate cancer cells. Pharmaceuticals (Basel, Switzerland) 14(10):949

    CAS  Google Scholar 

  48. León-González AJ, Sáez-Martínez P, Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E et al (2021) Comparative cytotoxic activity of hydroxytyrosol and its semisynthetic lipophilic derivatives in prostate cancer cells. Antioxidants (Basel, Switzerland) 10(9):1348

    Google Scholar 

Download references

Funding

This work was supported by the Sakarya University Scientific Research Projects Unit [SAU-BAPK] under Grant [Number 2019-6-21-183].

Author information

Authors and Affiliations

Authors

Contributions

ADO and GGE originated and designed the research. SK and ES advised on experimental design. ADO and GGE conducted experiments. ADO, GGE, SK and ES analyzed and interpreted the data. All authors read carefully and approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Asuman Deveci Ozkan.

Ethics declarations

Conflict of interest

The authors have no conflicts and financial of interest to declare that are relevant to the content of this article.

Ethical approval

No ethics approval was received for conducting this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deveci Ozkan, A., Guney Eskiler, G., Kaleli, S. et al. Immunotherapeutic role of cabazitaxel treatment in the activation of TLR3 signalling in metastatic castration-resistant prostate cancer in vitro. Mol Biol Rep 49, 1261–1271 (2022). https://doi.org/10.1007/s11033-021-06953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06953-2

Keywords

Navigation