Skip to main content
Log in

The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes.

Methods and results

The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001).

Conclusions

This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of the present study were included within the article.

References

  1. Cho NM. International Diabetes Federation (2017) Forewords. IDF diabetes atlas-eighth addition. http://fmdiabetes.org/wp-content/uploads/2018/03/IDF-2017.pdf. Accessed Nov 2019

  2. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Supplement 1):62–69

    Article  Google Scholar 

  3. Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents. Drugs 65(3):385–411. https://doi.org/10.2165/00003495-200565030-00005

    Article  CAS  PubMed  Google Scholar 

  4. Tuzun S, Girgin FK, Sözmen EY, Menteş G, Ersöz B (1999) Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues. Exp Toxicol Pathol 51:436–441. https://doi.org/10.1016/S0940-2993(99)80036-0

    Article  CAS  PubMed  Google Scholar 

  5. Avery MA, Mizuno CS, Chittiboyina AG, Kurtz TW, Pershadsingh HA (2008) Type 2 diabetes and oral antihyperglycemic drugs. Curr Med Chem 15(1):61–74. https://doi.org/10.2174/092986708783330656

    Article  PubMed  Google Scholar 

  6. Riddle MC (1999) Oral pharmacologic management of type 2 diabetes. Am Fam Physician 60:2613–2620

    CAS  PubMed  Google Scholar 

  7. Marchetti P, Giannarelli R, di Carlo A, Navalesi R (1991) Pharmacokinetic optimisation of oral hypoglycaemic therapy. Clin Pharmacokinet 21(4):308–317. https://doi.org/10.2165/00003088-199121040-00006

    Article  CAS  PubMed  Google Scholar 

  8. Sliwinska A, Blasiak J, Drzewoski J (2006) Effect of gliclazide on DNA damage in human peripheral blood lymphocytes and insulinoma mouse cells. Chem Biol Interact 162:259–267. https://doi.org/10.1016/j.cbi.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  9. Sliwinska A, Blasiak J, Kasznicki J, Drzewoski J (2008) In vitro effect of gliclazide on DNA damage and repair in patients with type 2 diabetes mellitus (T2DM). Chem Biol Interact 173:159–165. https://doi.org/10.1016/j.cbi.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  10. Rabbani SI, Devi K, Khanam S (2009) Inhibitory effect of glimepiride on nicotinamide-streptozotocin induced nuclear damages and sperm abnormality in diabetic Wistar rats. Indian J Exp Biol 47:804–810

    CAS  PubMed  Google Scholar 

  11. de Sant’Anna JR, da Silva Franco CC, de Freitas Mathias PC, de Castro-Prado MA (2015) Assessment of in vivo and in vitro genotoxicity of glibenclamide in eukaryotic cells. PLoS ONE 10:e0120675. https://doi.org/10.1371/journal.pone.0120675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaik NA, Shaik JP, Ali S, Imran A, Rao DK (2010) Increased frequency of micronuclei in diabetes mellitus patients using pioglitazone and glimepiride in combination. Food Chem Toxicol 48:3432–3435. https://doi.org/10.1016/j.fct.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  13. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  CAS  PubMed  Google Scholar 

  14. Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLOS Biol 5(5):e110. https://doi.org/10.1371/journal.pbio.0050110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. PNAS 92(10):4337–4341. https://doi.org/10.1073/pnas.92.10.4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109. https://doi.org/10.14336/AD.2014.0305

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu T, Finkel T (2008) Free radicals and senescence. Exp Cell Res 314(9):1918–1922. https://doi.org/10.1016/j.yexcr.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu M, Palmer AK, Ding H et al (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4:e12997. https://doi.org/10.7554/eLife.12997.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xu M, Tchkonia T, Ding H et al (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci USA 112:6301–6310. https://doi.org/10.1073/pnas.1515386112

    Article  CAS  Google Scholar 

  20. Kobayashi KA, Bauer LA, Horn JR, Opheim K, Wood JF, Kradjan WA (1988) Glipizide pharmacokinetics in young and elderly volunteers. Clin Pharm 7(3):224–228

    CAS  PubMed  Google Scholar 

  21. Kradjan WA, Kobayashi KA, Bauer LA, Horn JR, Opheim KE, Wood FJ Jr (1989) Glipizide pharmacokinetics: effects of age, diabetes, and multiple dosing. J Clin Pharmacol 29(12):1121–1127. https://doi.org/10.1002/j.1552-4604.1989.tb03289.x

    Article  CAS  PubMed  Google Scholar 

  22. Dasso M (2002) The Ran GTPase: theme and variations. Curr Biol 12(14):R502–R508. https://doi.org/10.1016/S0960-9822(02)00970-3

    Article  CAS  PubMed  Google Scholar 

  23. Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671. https://doi.org/10.1146/annurev.biochem.76.052705.161529

    Article  CAS  PubMed  Google Scholar 

  24. Wilde A, Lizarraga SB, Zhang L et al (2001) Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3:221. https://doi.org/10.1038/35060000

    Article  CAS  PubMed  Google Scholar 

  25. Arnaoutov A, Dasso M (2003) The Ran GTPase regulates kinetochore function. Dev Cell 5:99–111. https://doi.org/10.1016/S1534-5807(03)00194-1

    Article  CAS  PubMed  Google Scholar 

  26. Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464. https://doi.org/10.1038/nrm2410

    Article  CAS  PubMed  Google Scholar 

  27. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M (2009) Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci 5(5):428. https://doi.org/10.7150/ijbs.5.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Watt PJ, Leaner VD (2011) The nuclear exporter, Crm1, is regulated by NFY and Sp1 in cancer cells and repressed by p53 in response to DNA damage. BBA-Gene Regul Mech 1809(7):316–326. https://doi.org/10.1016/j.bbagrm.2011.05.017

    Article  CAS  Google Scholar 

  29. Dworak N, Makosa D, Chatterjee M et al (2019) A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 18(1):e12851. https://doi.org/10.1111/acel.12851

    Article  CAS  PubMed  Google Scholar 

  30. Thompson ME (2010) BRCA1 16 years later: nuclear import and export processes. FEBS J 277:3072–3078. https://doi.org/10.1111/j.1742-4658.2010.07733.x

    Article  CAS  PubMed  Google Scholar 

  31. Blackinton JG, Keene JD (2014) Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol 34:44–54. https://doi.org/10.1016/j.semcdb.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  32. Cekan P, Hasegawa K, Pan Y et al (2016) RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage–induced cell senescence. Mol Biol Cell 27(8):1346–1357. https://doi.org/10.1091/mbc.E16-01-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miard S, Dombrowski L, Carter S, Boivin L, Picard F (2009) Aging alters PPARgamma in rodent and human adipose tissue by modulating the balance in steroid receptor coactivator-1. Aging Cell 8:449–459. https://doi.org/10.1111/j.1474-9726.2009.00490.x

    Article  CAS  PubMed  Google Scholar 

  34. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. https://doi.org/10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) The analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  36. McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 288:47–63. https://doi.org/10.1016/0027-5107(93)90207-v

    Article  CAS  PubMed  Google Scholar 

  37. Forchhammer L, Johansson C, Loft S et al (2010) Variation in the measurement of DNA damage by comet assay measured by the ECVAG† inter-laboratory validation trial. Mutagenesis 25(2):113–123. https://doi.org/10.1093/mutage/gep048

    Article  CAS  PubMed  Google Scholar 

  38. Miyamae Y, Yamamoto M, Sasaki YF et al (1998) Evaluation of a tissue homogenization technique that isolates nuclei for the in vivo single cell gel electrophoresis (comet) assay: a collaborative study by five laboratories. Mutat Res Genet Toxicol Environ Mutagen 418(2–3):131–140. https://doi.org/10.1016/S1383-5718(98)00112-0

    Article  CAS  Google Scholar 

  39. Baltaci V, Aygün N, Akyol D, Karakaya AE, Şardaş S (1998) Chromosomal aberrations and alkaline comet assay in families with habitual abortion. M Mutat Res Genet Toxicol Environ Mutagen 417(1):47–55. https://doi.org/10.1016/S1383-5718(98)00097-7

    Article  CAS  Google Scholar 

  40. Buchwalter A, Hetzer MW (2017) Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 8(1):1–13. https://doi.org/10.1038/s41467-017-00322-z

    Article  CAS  Google Scholar 

  41. Bridger JM, Kill IR (2004) Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Exp Gerontol 39(5):717–724. https://doi.org/10.1016/j.exger.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  42. Swanson EC, Manning B, Zhang H, Lawrence JB (2013) Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol 203(6):929–942. https://doi.org/10.1083/jcb.201306073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485. https://doi.org/10.1074/jbc.M115.681908

    Article  CAS  PubMed  Google Scholar 

  44. Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33. https://doi.org/10.1038/nrc.2015.2

    Article  CAS  PubMed  Google Scholar 

  45. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R (2009) Diabetes and cancer. Endocr Relat Cancer 16(4):1103–1123. https://doi.org/10.1677/ERC-09-0087

    Article  CAS  PubMed  Google Scholar 

  46. Drivas GT, Shih A, Coutavas E, Rush MG, D’eustachio P (1990) Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10(4):1793–1798. https://doi.org/10.1128/MCB.10.4.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye F, Zhang H, Yang YX et al (2011) Comparative proteome analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D LC-MS/MS. J Cell Biochem 112(10):3002–3014. https://doi.org/10.1002/jcb.23223

    Article  CAS  PubMed  Google Scholar 

  48. Babu DA, Deering TG, Mirmira RG (2007) A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 92(1–2):43–55. https://doi.org/10.1016/j.ymgme.2007.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagai M, Yoneda Y (2013) Downregulation of the small GTPase ras-related nuclear protein accelerates cellular ageing. Biochim Biophys Acta 1830(3):2813–2819. https://doi.org/10.1016/j.bbagen.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  50. Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM (2013) Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol 201(4):541–557. https://doi.org/10.1083/jcb.201212117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klement K, Goodarzi AA (2014) DNA double strand break responses and chromatin alterations within the aging cell. Exp Cell Res 329(1):42–52. https://doi.org/10.1016/j.yexcr.2014.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Marmara University Scientifical Research Projects Commission (Project Number: FEN-C-YLP-100616-0281).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MC, SC, MKG and BS. Methodology: MC, SC, MKG and BS. Formal analysis and investigation: MC, GD, PC, SC and BS. Writing-original draft preparation: MC, SC and BS. Writing-review and editing: BS. Funding acquisition: BS. Supervision: BS.

Corresponding author

Correspondence to Belgin Susleyici.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Consent for publication

All authors have read the manuscript and approved the final version.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevik, M., Caker, S., Deliorman, G. et al. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 49, 1151–1159 (2022). https://doi.org/10.1007/s11033-021-06942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06942-5

Keywords

Navigation