Skip to main content
Log in

Survey on phenotypic resistance in Enterococcus faecalis: comparison between the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Phenotypic resistance is considered as a serious therapeutic challenge for which a definitive remedy has not been discovered yet. Biofilm and persister cell formation are two well-studied phenotypic resistance phenomena, leading to the recalcitrance and relapse of different types of chronic infections. The presence of persister cells in biofilm structures seems to be one of the main factors contributing to the relapse of infections and treatment failure. Given the dormant and inert nature of persister cells, they can be easy targets for the immune system factors. Biofilm formation can be a survival strategy for the defenseless persister cells. Thus, this study was aimed to evaluate the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells.

Methods

Vancomycin susceptibility and biofilm formation ability were investigated among 95 E. faecalis clinical isolates using microtiter broth dilution and microtiter plate assays, respectively. PCR was used to determine the presence of biofilm-related genes (gelE, esp, and agg) among the vancomycin-susceptible, biofilm producer E. faecalis isolates (91 isolates). Minimum bactericidal concentration for biofilms (MBCB) were determined for vancomycin using the MTP assay. Bacterial persister assay was performed using an enzymatic lysis assay. Finally, the expression of biofilm-related genes was compared between the persister and non-persister isolates of E. faecalis using real-time qPCR.

Results

E. faecalis isolates showed a high level of susceptibility (95.8%) to vancomycin (MIC < 1 µg/mL). The gelE, esp, and agg genes were found in 91 (100%), 72 (79.12), and 74 (81.32) of the isolates, respectively. All the E. faecalis isolates were tolerant to vancomycin in the biofilm condition, showing a MBCB of > 2500 µg/mL. Based on the enzymatic lysis assay, only 3 isolates, out of the 91, had the ability to form persister cells. The expression of biofilm-associated genes was higher among the persister compared to non-persister E. faecalis isolates.

Conclusions

Biofilm-associated persister cells indicated a high vancomycin tolerance compared to non-persister cells. Moreover, persister isolates showed a higher tendency for biofilm formation and a higher expression level of the biofilm-associated genes, compared to non-persister isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Orababa OQ, Soriwei JD, Akinsuyi SO, Essiet UU, Solesi OM (2021) A systematic review and meta-analysis on the prevalence of vancomycin-resistant enterococci (VRE) among Nigerians. Porto Biomed J 6(1):e125

    PubMed  PubMed Central  Google Scholar 

  2. García-Solache M, Rice LB (2019) The Enterococcus: a model of adaptability to its environment. Clin Microbiol Rev 32(2):e00058–18

    PubMed  PubMed Central  Google Scholar 

  3. Werner G, Coque TM, Franz CM, Grohmann E, Hegstad K, Jensen L et al (2013) Antibiotic resistant enterococci—tales of a drug resistance gene trafficker. Int J Med Microbiol 303(6–7):360–379

    CAS  PubMed  Google Scholar 

  4. Zalipour M, Esfahani BN, Havaei SA (2019) Phenotypic and genotypic characterization of glycopeptide, aminoglycoside and macrolide resistance among clinical isolates of Enterococcus faecalis: a multicenter based study. BMC Res Notes 12(1):292

    PubMed  PubMed Central  Google Scholar 

  5. Hughes D, Andersson DI (2017) Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 41(3):374–391

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ciofu O, Rojo-Molinero E, Macià MD, Oliver A (2017) Antibiotic treatment of biofilm infections. Apmis 125(4):304–319

    PubMed  Google Scholar 

  7. Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543

    PubMed  PubMed Central  Google Scholar 

  8. Corona F, Martinez JL (2013) Phenotypic resistance to antibiotics. Antibiotics 2(2):237–255

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L (2021) Bacterial biofilm inhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol 12:676458

    PubMed  PubMed Central  Google Scholar 

  10. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

  11. Zhang Y, Yew WW, Barer MR (2012) Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 56(5):2223–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56

    CAS  PubMed  Google Scholar 

  13. Schilcher K, Horswill AR (2020) Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00026-19

    Article  PubMed  PubMed Central  Google Scholar 

  14. Conlon BP, Rowe SE, Lewis K (2015) Persister cells in biofilm associated infections. Springer, Biofilm-Based Healthcare-Associated Infections, pp 1–9

    Google Scholar 

  15. Shepard BD, Gilmore MS (2002) Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. Infect Immun 70(8):4344–4352

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng J-X, Wu Y, Lin Z-W, Pu Z-Y, Yao W-M, Chen Z et al (2017) Characteristics of and virulence factors associated with biofilm formation in clinical Enterococcus faecalis isolates in China. Front Microbiol 8:2338

    PubMed  PubMed Central  Google Scholar 

  17. Sedgley C, Nagel A, Shelburne C, Clewell D, Appelbe O, Molander A (2005) Quantitative real-time PCR detection of oral Enterococcus faecalis in humans. Arch Oral Biol 50(6):575–583

    CAS  PubMed  Google Scholar 

  18. Weinstein MP, Limbago B, Patel J, Mathers A, Campeau S, Mazzulli T et al (2018) Performance standards for antimicrobial disk susceptibility tests. M100 standard, 28th edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  19. Hashem YA, Amin HM, Essam TM, Yassin AS, Aziz RK (2017) Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin. Sci Rep 7(1):5733

    PubMed  PubMed Central  Google Scholar 

  20. Queipo-Ortuño MI, Colmenero JDD, Macias M, Bravo MJ, Morata P (2008) Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 15(2):293–6

    PubMed  Google Scholar 

  21. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49(6):2467–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cañas-Duarte SJ, Restrepo S, Pedraza JM (2014) Novel protocol for persister cells isolation. PLoS ONE 9(2):e88660

    PubMed  PubMed Central  Google Scholar 

  24. Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17(11):4406–4414

    CAS  PubMed  Google Scholar 

  25. Bjarnsholt TJA (2013) The role of bacterial biofilms in chronic infections. Apmis 121:1–58

    Google Scholar 

  26. Donlan RM (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J (2020) Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics (Basel, Switzerland) 10(1):3

    PubMed Central  Google Scholar 

  28. Karimaei S, Kazem Aghamir SM, Foroushani AR, Pourmand MR (2021) Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathog 159:105126

    CAS  PubMed  Google Scholar 

  29. Santa Maria PL, Kaufman AC, Bacacao B, Thai A, Chen X, Xia A et al (2021) Topical therapy failure in chronic suppurative otitis media is due to persister cells in biofilms. Otol Neurotol 42(9):e1263–e1272

    PubMed  Google Scholar 

  30. Waters EM, Rowe SE, O’Gara JP, Conlon BP (2016) Convergence of Staphylococcus aureus persister and biofilm research: can biofilms be defined as communities of adherent persister cells? PLoS Pathog 12(12):e1006012

    PubMed  PubMed Central  Google Scholar 

  31. Moghimbeigi A, Moghimbeygi M, Dousti M, Kiani F, Sayehmiri F, Sadeghifard N et al (2018) Prevalence of vancomycin resistance among isolates of enterococci in Iran: a systematic review and meta-analysis. Adolesc Health Med Therapeut 9:177

    Google Scholar 

  32. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186(17):5629–5639

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Klibi N, Ben Slama K, Sáenz Y, Masmoudi A, Zanetti S, Sechi LA et al (2007) Detection of virulence factors in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolates from a Tunisian hospital. Can J Microbiol 53(3):372–9

    CAS  PubMed  Google Scholar 

  34. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N (2004) Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72(10):6032–9

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh R, Sahore S, Kaur P, Rani A, Ray P (2016) Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog Dis. https://doi.org/10.1093/femspd/ftw05

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stewart PS (2015) Antimicrobial tolerance in biofilms. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0010-2014

    Article  PubMed  Google Scholar 

  37. Butini ME, Abbandonato G, Di Rienzo C, Trampuz A, Di Luca M (2019) Isothermal microcalorimetry detects the presence of persister cells in a Staphylococcus aureus biofilm after vancomycin treatment. Front Microbiol 10:332

    PubMed  PubMed Central  Google Scholar 

  38. Castaneda P, McLaren A, Tavaziva G, Overstreet D (2016) Biofilm antimicrobial susceptibility increases with antimicrobial exposure time. Clinical Orthopaedics and Related Research® 474(7):1659–1664

    Google Scholar 

  39. Meije Y, Almirante B, Del Pozo JL, Martín MT, Fernández-Hidalgo N, Shan A et al (2014) Daptomycin is effective as antibiotic-lock therapy in a model of Staphylococcus aureus catheter-related infection. J Infect 68(6):548–552

    PubMed  Google Scholar 

  40. Moscoso M, Domenech M, García E (2011) Vancomycin tolerance in Gram-positive cocci. Environ Microbiol Rep 3(6):640–650

    CAS  PubMed  Google Scholar 

  41. Saribas S, Bagdatli Y (2004) Vancomycin tolerance in enterococci. Chemotherapy 50(5):250–4

    CAS  PubMed  Google Scholar 

  42. Ladjouzi R, Bizzini A, Lebreton F, Sauvageot N, Rincé A, Benachour A et al (2013) Analysis of the tolerance of pathogenic enterococci and Staphylococcus aureus to cell wall active antibiotics. J Antimicrob Chemother 68(9):2083–2091

    CAS  PubMed  Google Scholar 

  43. Abranches J, Martinez AR, Kajfasz JK, Chávez V, Garsin DA, Lemos JA (2009) The molecular alarmone (p) ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol 191(7):2248–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abranches J, Tijerina P, Avilés-Reyes A, Gaca AO, Kajfasz JK, Lemos JA (2013) The cell wall-targeting antibiotic stimulon of Enterococcus faecalis. PLoS ONE 8(6):e64875

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14(5):320–330

    CAS  PubMed  Google Scholar 

  46. Chowdhury N, Wood TL, Martínez-Vázquez M, García‐Contreras R, Wood TK (2016) DNA‐crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113(9):1984–1992

    CAS  PubMed  Google Scholar 

  47. Macia M, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–990

    CAS  PubMed  Google Scholar 

  48. Chen X, Thomsen TR, Winkler H, Xu Y (2020) Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol 20(1):1–11

    CAS  Google Scholar 

Download references

Funding

This research was supported by Ilam University of Medical Sciences, Ilam, Iran. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IP and VHK contributed to the conception, design of the work, acquisition, analysis and interpretation of data. AM and SY contributed in administrative, technical, and material support PA, BSK, SK and VHK contributed in drafting of the manuscript, revising and final approval of the version to be published.

Corresponding author

Correspondence to Iraj Pakzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This investigation was approved by the Medical Research and Ethics Committee of Ilam University of Medical Science (IR.MEDILAM.REC.1397.046) (Ethics Approval Number: 971013/38).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviar, V.H., Khoshnood, S., Asadollahi, P. et al. Survey on phenotypic resistance in Enterococcus faecalis: comparison between the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells. Mol Biol Rep 49, 971–979 (2022). https://doi.org/10.1007/s11033-021-06915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06915-8

Keywords

Navigation