Skip to main content

Advertisement

Log in

Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hematopoietic stem cell (HSC) transplantation is considered a possible treatment option capable of curing various diseases. The aim of this study was the co-culturing of mesenchymal stem cell (MSC) spheres with HSCs under hypoxic condition to enhance the proliferation, self-renewal, stemness, and homing capacities of HSCs.

Methods and results

HSCs were expanded after being subjected to different conditions including cytokines without feeder (Cyto), co-culturing with adherent MSCs (MSC), co-culturing with adherent MSCs + hypoxia (MSC + Hyp), co-culturing with MSCs spheres (Sph-MSC), co-culturing with MSCs spheres + hypoxia (Sph-MSC + Hyp), co-culturing with MSC spheres + cytokines (Sph-MSC + Cyto). After 10 days, total nucleated cell (TNC) and CD34+/CD38 cell counts, colony-forming unit assay (CFU), long-term culture initiating cell (LTC-IC), the expression of endothelial protein C receptor (EPCR), nucleostemin (NS), nuclear factor I/X (Nfix) CXCR4, and VLA-4 were evaluated. The TNC, CD34+/CD38 cell count, CFU, and LTC-IC were higher in the Sph-MSC + Hyp and Sph-MSC + Cyto groups as compared with those of the MSC + Hyp group (P < 0.001). The expanded HSCs co-cultured with MSC spheres in combination with hypoxia expressed more EPCR, CXCR4, VLA-4, NS, and Nfix mRNA. The protein expression was also more up-regulated in the Sph-MSC + Cyto and Sph-MSC + Hyp groups.

Conclusion

Co-culturing HSCs with MSC spheres under hypoxic condition not only leads to higher cellular yield but also increases the expression of self-renewal and homing genes. Therefore, we suggest this approach as a simple and non-expensive strategy that might improve the transplantation efficiency of HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali MA, Fuse K, Tadokoro Y, Hoshii T, Ueno M, Kobayashi M et al (2017) Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression. Sci Rep 7(1):1–12

    Google Scholar 

  2. Kita K, Xiu F, Jeschke MG (2014) Ex vivo expansion of hematopoietic stem and progenitor cells: recent advances. World J Hematol 3(2):18–28

    Google Scholar 

  3. Aqmasheh S (2017) Effects of mesenchymal stem cell derivatives on hematopoiesis and hematopoietic stem cells. Adv Pharm Bull 7(2):165

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bazinet A, Popradi G (2019) A general practitioner’s guide to hematopoietic stem-cell transplantation. Curr Oncol 26(3):187

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K et al (2019) Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep 9(1):1–11

    Google Scholar 

  6. Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C et al (2019) Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant 54(10):1525–1552

    PubMed  Google Scholar 

  7. Merli P, Caruana I, De Vito R, Strocchio L, Weber G, Del Bufalo F et al (2019) Role of interferon-γ in immune-mediated graft failure after allogeneic hematopoietic stem cell transplantation. Haematologica 104(11):2314–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozdemir ZN, Bozdağ SC (2018) Graft failure after allogeneic hematopoietic stem cell transplantation. Transfus Apher Sci 57(2):163–167

    PubMed  Google Scholar 

  9. Zhang Y, Shen B, Guan X, Qin M, Ren Z, Ma Y et al (2019) Safety and efficacy of ex vivo expanded CD34+ stem cells in murine and primate models. Stem Cell Res Ther 10(1):173

    PubMed  PubMed Central  Google Scholar 

  10. Matsuoka Y, Nakatsuka R, Sumide K, Kawamura H, Takahashi M, Fujioka T et al (2015) Prospectively isolated human bone marrow cell-derived MSC s support primitive human CD34-negative hematopoietic stem cells. Stem Cells 33(5):1554–1565

    CAS  PubMed  Google Scholar 

  11. Kadekar D, Kale V, Limaye L (2015) Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34+ cells. Stem Cell Res Ther 6(1):201

    PubMed  PubMed Central  Google Scholar 

  12. Amiri F, Halabian R, Dehgan Harati M, Bahadori M, Mehdipour A, Mohammadi Roushandeh A et al (2015) Positive selection of Wharton’s jelly-derived CD105+ cells by MACS technique and their subsequent cultivation under suspension culture condition: a simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 20(4):208–216

    CAS  PubMed  Google Scholar 

  13. Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M (2018) Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 33(1):46–52

    CAS  PubMed  Google Scholar 

  14. Driscoll J, Patel T (2019) The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. J Gastroenterol 54(9):1–11

    Google Scholar 

  15. Sagaradze G, Grigorieva O, Nimiritsky P, Basalova N, Kalinina N, Akopyan Z et al (2019) Conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int J Mol Sci 20(7):1656

    CAS  PubMed Central  Google Scholar 

  16. Akhter S, Rahman MM, Lee HS, Kim H-J, Hong S-T (2013) Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells. Protein Cell 4(3):220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pawitan JA (2014) Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int. https://doi.org/10.1155/2014/965849

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khodadi E, Shahrabi S, Shahjahani M, Azandeh S, Saki N (2016) Role of stem cell factor in the placental niche. Cell Tissue Res 366(3):523–531

    CAS  PubMed  Google Scholar 

  19. Oubari F, Amirizade N, Mohammadpour H, Nakhlestani M, Zarif MN (2015) The important role of FLT3-L in ex vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells. Cell J (Yakhteh) 17(2):201

    Google Scholar 

  20. Farahbakhshian E, Verstegen MM, Visser TP, Kheradmandkia S, Geerts D, Arshad S et al (2014) Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0105642

    Article  PubMed  PubMed Central  Google Scholar 

  21. Richter J, Traver D, Willert K (2017) The role of Wnt signaling in hematopoietic stem cell development. Crit Rev Biochem Mol Biol 52(4):414–424

    PubMed  PubMed Central  Google Scholar 

  22. Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18(12):1778

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu FD, Tam K, Pishesha N, Poon Z, Van Vliet KJ (2018) Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 9(1):1–14

    Google Scholar 

  24. Futrega K, Atkinson K, Lott WB, Doran MR (2017) Spheroid coculture of hematopoietic stem/progenitor cells and monolayer expanded mesenchymal stem/stromal cells in polydimethylsiloxane microwells modestly improves in vitro hematopoietic stem/progenitor cell expansion. Tissue Eng C 23(4):200–218

    CAS  Google Scholar 

  25. Huang X, Zhu B, Wang X, Xiao R, Wang C (2016) Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: functional implication of the biomimetic HSC niche. Int J Mol Med 38(4):1141–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Khong D, Li M, Singleton A, Chin L-Y, Parekkadan B (2018) Stromalized microreactor supports murine hematopoietic progenitor enrichment. Biomed Microdevices 20(1):13

    PubMed  PubMed Central  Google Scholar 

  27. Mayle A, Luo M, Jeong M, Goodell MA (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83(1):27–37

    PubMed  Google Scholar 

  28. Zhao D, Liu L, Chen Q, Wang F, Li Q, Zeng Q et al (2018) Hypoxia with Wharton’s jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34+ cells. Stem Cell Res Ther 9(1):1–11

    Google Scholar 

  29. Mohammadali F, Abroun S, Atashi A (2018) Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells. Iran J Basic Med Sci 21(7):709

    PubMed  PubMed Central  Google Scholar 

  30. Kiani AA, Abdi J, Halabian R, Roudkenar MH, Amirizadeh N, Soleiman Soltanpour M et al (2014) Over expression of HIF-1α in human mesenchymal stem cells increases their supportive functions for hematopoietic stem cells in an experimental co-culture model. Hematology 19(2):85–98

    CAS  PubMed  Google Scholar 

  31. Pfaffl MW (2012) Quantification strategies in real-time polymerase chain reaction. In: Quantitative real-time PCR in applied microbiology. Caister Academic Press, Norfolk, pp 53–62

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45–e45

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  34. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285(2):194–204

    CAS  PubMed  Google Scholar 

  35. Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A et al (2014) Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 19(5):657–666

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhang SH, Lee S, Shin J-Y, Lee T-J, Jang H-K, Kim B-S (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther 22(4):862–872

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Antebi B, Rodriguez LA, Walker KP, Asher AM, Kamucheka RM, Alvarado L et al (2018) Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9(1):265

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nowicki M, Stelmach P, Szmigielska-Kapłon A (2018) Selected factors influencing angiogenesis and hematopoietic niche. Acta Haematol Pol 49(3):112–120

    Google Scholar 

  39. Mousavi SH, Abroun S, Soleimani M, Mowla SJ (2018) 3-Dimensional nano-fibre scaffold for ex vivo expansion of cord blood haematopoietic stem cells. Artif Cells Nanomed Biotechnol 46(4):740–748

    CAS  PubMed  Google Scholar 

  40. Ahmadnejad M, Amirizadeh N, Mehrasa R, Karkhah A, Nikougoftar M, Oodi A (2017) Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Res 52(1):25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin GH, Park CY (2017) EPCR: a novel marker of cultured cord blood HSCs. Blood J Am Soc Hematol 129(25):3279–3280

    CAS  Google Scholar 

  42. Subramaniam A, Talkhoncheh MS, Magnusson M, Larsson J (2019) Endothelial protein C receptor (EPCR) expression marks human fetal liver hematopoietic stem cells. Haematologica 104(2):e47

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fares I, Chagraoui J, Lehnertz B, MacRae T, Mayotte N, Tomellini E et al (2017) EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 129(25):3344–3351

    CAS  PubMed  Google Scholar 

  44. Iwasaki H, Arai F, Kubota Y, Dahl M, Suda T (2010) Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood J Am Soc Hematol 116(4):544–553

    CAS  Google Scholar 

  45. Zhang Y, Gao Y (2016) Novel chemical attempts at ex vivo hematopoietic stem cell expansion. Int J Hematol 103(5):519–529

    CAS  PubMed  Google Scholar 

  46. Yaghoobi MM, Mowla SJ, Tiraihi T (2005) Nucleostemin, a coordinator of self-renewal, is expressed in rat marrow stromal cells and turns off after induction of neural differentiation. Neurosci Lett 390(2):81–86

    CAS  PubMed  Google Scholar 

  47. Yoshida R, Fujimoto T, Kudoh S, Nagata M, Nakayama H, Shinohara M et al (2011) Nucleostemin affects the proliferation but not differentiation of oral squamous cell carcinoma cells. Cancer Sci 102(7):1418–1423

    CAS  PubMed  Google Scholar 

  48. Hall T, Walker M, Ganuza M, Holmfeldt P, Bordas M, Kang G et al (2018) Nfix promotes survival of immature hematopoietic cells via regulation of c-Mpl. Stem Cells 36(6):943–950

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Holmfeldt P, Pardieck J, Saulsberry AC, Nandakumar SK, Finkelstein D, Gray JT et al (2013) Nfix is a novel regulator of murine hematopoietic stem and progenitor cell survival. Blood J Am Soc Hematol 122(17):2987–2996

    CAS  Google Scholar 

  50. Ho S-Y, Ling T-Y, Lin H-Y, Liou JT-J, Liu F-C, Chen I et al (2017) SDF-1/CXCR4 signaling maintains stemness signature in mouse neural stem/progenitor cells. Stem Cells Int 2017. https://doi.org/10.1155/2017/2493752

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Hamadan University of Medical Sciences (Grant Number 990126370); and the Guilan University of Medical Sciences (Grant Number IR.GUMS.REC.1396.508).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [FA and MHR], Methodology: [FA, AAK and MB], Formal analysis: [FA and MHR], Investigation and Writing—original draft preparation: [FA], Review and editing: [MB and MHR], Funding acquisition: [FA and MHR], Supervision: [MHR].

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were approved by Hamadan University of Medical Sciences Ethic Committee (No. IR.UMSHA.REC.1399.035). These procedures were in accordance with the ethical standards of the Institutional and/or National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Human umbilical cord tissue/blood was taken after filling of consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, F., Kiani, A.A., Bahadori, M. et al. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression. Mol Biol Rep 49, 931–941 (2022). https://doi.org/10.1007/s11033-021-06912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06912-x

Keywords

Navigation