Skip to main content

Advertisement

Log in

Hormetic effect of low doses of rapamycin triggers anti-aging cascades in WRL-68 cells by modulating an mTOR-mitochondria cross-talk

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Rapamycin is hormetic in nature—it demonstrates contrasting effects at high and low doses. It is toxic at moderate/high doses, while it can restrain aging and extend lifespan at low doses. However, it is not fully understood how rapamycin governs cellular aging. On the other hand, aging is putatively correlated to mitochondrial dysregulation. Although previous studies have suggested that hormetic (low) doses of rapamycin can cause partial/incomplete inhibition of mTOR, the actual modus operandi of how such partial mTOR inhibition might modulate the mTOR-mitochondria cross-talk remained to be deciphered in the context of cellular aging. The present study was designed to understand the hormetic effects of rapamycin on cellular factors that govern aging-associated changes in mitochondrial facets, such as functional and metabolic homeostases, sustenance of membrane potential, biogenesis, mitophagy, and oxidative injury to mitochondrial macromolecules.

Methods and results

WRL-68 cells treated (24 h) with variable doses of rapamycin were studied for estimating their viability, apoptosis, senescence, mitochondrial density and Δψm. Expression levels of key functional proteins were estimated by immunofluorescence/immunoblots. Oxidative damage to mtDNA/mtRNA/proteins was measured in mitochondrial lysates. We demonstrated that hormetic doses (0.1 and 1 nM) of rapamycin can alleviate aging-associated mitochondrial dyshomeostasis in WRL-68 cells, such as oxidative injury to mitochondrial nucleic acids and proteins, as well as disequilibrium of mitochondrial density, membrane potential, biogenesis, mitophagy and overall metabolism.

Conclusions

We established that low doses of rapamycin can hormetically amend the mTOR-mitochondria cross-talk, and can consequently promote anti-aging outcome in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

4E-BP1:

Eukaryotic translation initiation factor 4E-binding protein 1

8-OH-dG:

8-Hydroxy-2’-deoxyguanosine

8-OH-g:

8-Hydroxyguanine

8-OH-G:

8-Hydroxyguanosine

BECN1:

Beclin 1

COXII:

Cytochrome c oxidase subunit II

DAPI:

4′,6-Diamidino-2-phenylindole

DHA:

Dinitrophenyl hydrazone adduct

DHE:

Hydroethidine/dihydroethidium

DNPH:

2,4-Dinitrophenylhydrazine

Dox:

Doxorubicin

eIF4E:

Eukaryotic translation initiation factor 4E

FOXO1:

Forkhead box protein O1

ITP:

Interventions Testing Program

mtDNA:

Mitochondrial DNA

mtOGR:

Mitochondrial OGR

mTOR:

Mechanistic target of RAP

mtRNA:

Mitochondrial RNA

MTT:

3-(4,5- Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

OGR:

Oxidized guanine residues

p70S6K:

70 kDa ribosomal protein S6 kinase

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1α

PINK1:

PTEN-induced kinase 1

RAP:

Rapamycin

rTdT:

Recombinant terminal deoxynucleotidyl transferase

SA-β-gal:

Senescence-associated β-galactosidase

SDH:

Succinate dehydrogenase

SDS:

Sodium dodecyl sulfate

SIRT1:

Sirtuin 1

TFAM:

Mitochondrial transcription factor A,

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick-end labeling

X-gal:

5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside

YY1:

Yin yang 1

Δψm:

Mitochondrial membrane potential

References

  1. Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. https://doi.org/10.1038/nature08221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller RA, Harrison DE, Astle CM et al (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201. https://doi.org/10.1093/gerona/glq178

    Article  CAS  PubMed  Google Scholar 

  3. NIA (2020) National Institute on Aging - Interventions Testing Program (ITP). In: National Institute on Aging. http://www.nia.nih.gov/research/dab/interventions-testing-program-itp. Accessed 27 Dec 2020

  4. Barlow AD, Nicholson ML, Herbert TP (2013) Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes 62:2674–2682. https://doi.org/10.2337/db13-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blagosklonny MV (2019) Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 10:607. https://doi.org/10.1038/s41419-019-1822-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhakta-Guha D, Efferth T (2015) Hormesis: decoding two sides of the same coin. Pharmaceuticals (Basel) 8:865–883. https://doi.org/10.3390/ph8040865

    Article  CAS  Google Scholar 

  7. Law BK (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56:47–60. https://doi.org/10.1016/j.critrevonc.2004.09.009

    Article  PubMed  Google Scholar 

  8. Sharp ZD, Bartke A (2005) Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 60:293–300

    Article  PubMed  Google Scholar 

  9. Sun L, Sadighi Akha AA, Miller RA, Harper JM (2009) Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci 64:711–722. https://doi.org/10.1093/gerona/glp051

    Article  CAS  PubMed  Google Scholar 

  10. Sciarretta S, Forte M, Frati G, Sadoshima J (2018) New insights into the role of mTOR signaling in the cardiovascular system. Circ Res 122:489–505. https://doi.org/10.1161/CIRCRESAHA.117.311147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    Article  CAS  PubMed  Google Scholar 

  12. Das P, Guha G (2011) Aging and mitochondrial DNA. J Sci Res 3:176–186. https://doi.org/10.3329/jsr.v3i1.5078

    Article  CAS  Google Scholar 

  13. Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445. https://doi.org/10.1089/ars.2012.5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez-Roman I, Gómez A, Pérez I et al (2012) Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 13:399–411. https://doi.org/10.1007/s10522-012-9384-5

    Article  CAS  PubMed  Google Scholar 

  15. Mahalakshmi R, Priyanga J, Vedha Hari BN et al (2020) Hexavalent chromium-induced autophagic death of WRL-68 cells is mitigated by aqueous extract of Cuminum cyminum L. seeds. 3 Biotech 10:191. https://doi.org/10.1007/s13205-020-02184-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  17. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 Is mediated by p70S6 kinase. J Biol Chem 280:25485–25490. https://doi.org/10.1074/jbc.M501707200

    Article  CAS  PubMed  Google Scholar 

  18. Gelmetti V, De Rosa P, Torosantucci L et al (2017) PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13:654–669. https://doi.org/10.1080/15548627.2016.1277309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma X, Su P, Yin C et al (2020) The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci 21:692. https://doi.org/10.3390/ijms21030692

    Article  CAS  PubMed Central  Google Scholar 

  20. Ngo HB, Lovely GA, Phillips R, Chan DC (2014) Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 5:3077. https://doi.org/10.1038/ncomms4077

    Article  CAS  PubMed  Google Scholar 

  21. Nadon NL, Miller RA, Strong R, Harrison DE (2016) Chapter 10—NIA interventions testing program: a collaborative approach for investigating interventions to promote healthy aging. In: Kaeberlein MR, Martin GM (eds) Handbook of the biology of aging, 8th edn. Academic Press, San Diego, pp 287–303

    Chapter  Google Scholar 

  22. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guha G, Lu W, Li S et al (2015) Novel pactamycin analogs induce p53 dependent cell-cycle arrest at s-phase in human head and neck squamous cell carcinoma (HNSCC) cells. PLoS ONE 10:e0125322. https://doi.org/10.1371/journal.pone.0125322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu D, Prives C (2018) Relevance of the p53-MDM2 axis to aging. Cell Death Differ 25:169–179. https://doi.org/10.1038/cdd.2017.187

    Article  CAS  PubMed  Google Scholar 

  25. Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32:5129–5143. https://doi.org/10.1038/onc.2012.640

    Article  CAS  PubMed  Google Scholar 

  26. Pearce LR, Alton GR, Richter DT et al (2010) Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J 431:245–255. https://doi.org/10.1042/BJ20101024

    Article  CAS  PubMed  Google Scholar 

  27. Katta A, Kakarla S, Wu M et al (2009) Altered regulation of contraction-induced Akt/mTOR/p70S6k pathway signaling in skeletal muscle of the obese Zucker rat. Exp Diabetes Res 2009:384683. https://doi.org/10.1155/2009/384683

    Article  CAS  PubMed  Google Scholar 

  28. Ayuso MI, Hernández-Jiménez M, Martín ME et al (2010) New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J Biol Chem 285:34355–34363. https://doi.org/10.1074/jbc.M110.135103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morita M, Gravel S-P, Hulea L et al (2015) mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14:473–480. https://doi.org/10.4161/15384101.2014.991572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye Z, Li G, Kim C et al (2018) Regulation of miR-181a expression in T cell aging. Nat Commun 9:3060. https://doi.org/10.1038/s41467-018-05552-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson R, Prolla T (2009) PGC-1alpha in aging and anti-aging interventions. Biochim Biophys Acta 1790:1059–1066. https://doi.org/10.1016/j.bbagen.2009.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wenz T (2011) Mitochondria and PGC-1α in aging and age-associated diseases. J Aging Res 2011:e810619. https://doi.org/10.4061/2011/810619

    Article  Google Scholar 

  33. Chen G, Kroemer G, Kepp O (2020) Mitophagy: an emerging role in aging and age-associated diseases. Front Cell Dev Biol 8:200. https://doi.org/10.3389/fcell.2020.00200

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mai S, Klinkenberg M, Auburger G et al (2010) Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123:917–926. https://doi.org/10.1242/jcs.059246

    Article  CAS  PubMed  Google Scholar 

  35. Zheng L, Bernard-Marissal N, Moullan N et al (2017) Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neurons. Hum Mol Genet 26:582–598. https://doi.org/10.1093/hmg/ddw418

    Article  CAS  PubMed  Google Scholar 

  36. Xiang F, Ma S, Lv Y et al (2019) Tumor necrosis factor receptor-associated protein 1 regulates hypoxia-induced apoptosis through a mitochondria-dependent pathway mediated by cytochrome c oxidase subunit II. Burns Trauma 7:16. https://doi.org/10.1186/s41038-019-0154-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takahashi K, Miura Y, Ohsawa I et al (2018) In vitro rejuvenation of brain mitochondria by the inhibition of actin polymerization. Sci Rep 8:15585. https://doi.org/10.1038/s41598-018-34006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811. https://doi.org/10.1089/ars.2009.3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siracusa R, Scuto M, Fusco R et al (2020) Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants (Basel) 9:824. https://doi.org/10.3390/antiox9090824

    Article  CAS  Google Scholar 

  40. Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 12:288–341. https://doi.org/10.2203/dose-response.13-035.Ristow

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrero A, Barja G (2001) Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life-span of the rat. J Am Aging Assoc 24:45–50. https://doi.org/10.1007/s11357-001-0006-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sebastián D, Sorianello E, Segalés J et al (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35:1677–1693. https://doi.org/10.15252/embj.201593084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gureev AP, Shaforostova EA, Popov VN (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 10:435. https://doi.org/10.3389/fgene.2019.00435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kitada M, Ogura Y, Koya D (2016) The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging 8:2290–2307. https://doi.org/10.18632/aging.101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salminen A, Kaarniranta K, Kauppinen A (2013) Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 14:3834–3859. https://doi.org/10.3390/ijms14023834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee S-H, Lee J-H, Lee H-Y, Min K-J (2019) Sirtuin signaling in cellular senescence and aging. BMB Rep 52:24–34. https://doi.org/10.5483/BMBRep.2019.52.1.290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan Y, Cruzat VF, Newsholme P et al (2016) Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. Mech Ageing Dev 155:10–21. https://doi.org/10.1016/j.mad.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Zhang Q, Hu Y et al (2017) miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis 8:e3088. https://doi.org/10.1038/cddis.2017.467

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu T, Yang Q, Zhang X et al (2020) Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci 257:118116. https://doi.org/10.1016/j.lfs.2020.118116

    Article  CAS  PubMed  Google Scholar 

  50. Hu Q, Wang G, Peng J, et al (2017) Knockdown of SIRT1 Suppresses Bladder Cancer Cell Proliferation and Migration and Induces Cell Cycle Arrest and Antioxidant Response through FOXO3a-Mediated Pathways. In: BioMed Research International. https://www.hindawi.com/journals/bmri/2017/3781904/. Accessed 25 Dec 2020

Download references

Acknowledgements

The authors acknowledge Dr. Sudarshan Singh Rathore, Dr. M.R. Charan Raja, Dr. Sandeep Miryala and Ms. Nirekshana Krishnasagar for assistance with experiments and blinded confirmatory estimations. The authors also thank Dr. N. Saisubramanian, SCBT, SASTRA University, for his support. This study was funded by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (Grant Nos. YSS/2014/000139 & YSS/2015/000025), Department of Science and Technology “Fund for Improvement of S&T Infrastructure in Universities and Higher Educational institutions” (DST-FIST), Government of India [Grant No. SR/FST/ETI-331/2013 (SASTRA)], and Department of Biotechnology (DBT), Government of India Grant No. BT/PR22434/MED/30/1901/2017.

Author information

Authors and Affiliations

Authors

Contributions

GG and DBG: Conception and design of the study; Acquisition of data: RM and JP; Analysis and interpretation of data: RM, JP, GG and DBG; Drafting of the article: GG and DBG; Critical revisions for intellectual content: GG and DBG; Final approval of the submitted version: GG, DBG, RM and JP.

Corresponding authors

Correspondence to Dipita Bhakta-Guha or Gunjan Guha.

Ethics declarations

Conflict of interest

R. Mahalakshmi, J. Priyanga, Dipita Bhakta-Guha and Gunjan Guha declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, R., Priyanga, J., Bhakta-Guha, D. et al. Hormetic effect of low doses of rapamycin triggers anti-aging cascades in WRL-68 cells by modulating an mTOR-mitochondria cross-talk. Mol Biol Rep 49, 463–476 (2022). https://doi.org/10.1007/s11033-021-06898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06898-6

Keywords

Navigation