Skip to main content

Advertisement

Log in

Suprabasin: Role in human cancers and other diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Suprabasin (SBSN), a gene with unknown function located in q13 region of chromosome 19, was first found to be expressed in the basal layer of the stratified epithelium in mouse and human tissues and was thought to be a potential precursor of keratinized capsules. However, in recent years, significant progress has been made in the study of SBSN in a variety of human diseases. One common theme appears to be the effect of SBSN on tumor progression, such as invasion, metastasis and resistance. However, the function and mechanism of action of SBSN is still elusive. In this study, we reviewed the literature on SBSN in the PubMed database to identify the basic characteristics, biological functions, and roles of SBSN in cancer and other diseases. In particular, we focused on the potential mechanisms of SBSN activity, to improve our understanding of the complex function of this protein and provide a theoretical basis for further research on the role of SBSN in cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

Abbreviations

AD:

Atopic dermatitis

CHS:

Contact hypersensitivity

CSF:

Cerebrospinal fluid

ESCC:

Esophageal squamous cell carcinoma

EGF:

Epidermal growth factor

IFN-γ:

Interferon-γ

LSE:

Living skin equivalent

mTEC:

Mouse tumor endothelial cell

MDS:

Myelodysplastic syndrome

MS:

Multiple sclerosis

NSCLC:

Non-small cell lung cancer

NEC:

Normal endothelial cells

NPSLE:

Neuropsychiatric systemic lupus erythematosus

NPH:

Normal pressure hydrocephalus

OSCC:

Oral squamous cell carcinoma

SACC:

Salivary adenoid cystic carcinoma

SBSN :

Suprabasin

SLE:

Systemic lupus erythematosus

SC:

Stratum corneum

TEC:

Tumor endothelial cell

Th2:

T helper 2 cell

WGCNA:

Weighted gene co-expression network analysis

References

  1. Park GT, Lim SE, Jang SI et al (2002) Suprabasin, a novel epidermal differentiation marker and potential cornified envelope precursor. J Biol Chem 277(47):45195–45202. https://doi.org/10.1074/jbc.M205380200

    Article  CAS  PubMed  Google Scholar 

  2. Zhu J, Wu G, Li Q et al (2016) Overexpression of suprabasin is associated with proliferation and tumorigenicity of esophageal squamous cell carcinoma. Sci Rep 6:21549. https://doi.org/10.1038/srep21549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao C, Tan M, Bishop JA et al (2012) Suprabasin is hypomethylated and associated with metastasis in salivary adenoid cystic carcinoma. PLoS ONE 7(11):e48582. https://doi.org/10.1371/journal.pone.0048582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glazer CA, Smith IM, Ochs MF et al (2009) Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC. PLoS ONE 4(12):e8189. https://doi.org/10.1371/journal.pone.0008189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alam MT, Nagao-Kitamoto H, Ohga N et al (2014) Suprabasin as a novel tumor endothelial cell marker. Cancer Sci 105(12):1533–1540. https://doi.org/10.1111/cas.12549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ichinose K, Ohyama K, Furukawa K et al (2018) Novel anti-suprabasin antibodies may contribute to the pathogenesis of neuropsychiatric systemic lupus erythematosus. Clin Immunol 193:123–130. https://doi.org/10.1016/j.clim.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  7. Aoshima M, Phadungsaksawasdi P, Nakazawa S et al (2019) Decreased expression of suprabasin induces aberrant differentiation and apoptosis of epidermal keratinocytes: possible role for atopic dermatitis. J Dermatol Sci 95(3):107–112. https://doi.org/10.1016/j.jdermsci.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Asano N, Imatani A et al (2020) Sox2 induces tumorigenesis and angiogenesis of early-stage esophageal squamous cell carcinoma through secretion of Suprabasin. Carcinogenesis 41(11):1543–1552. https://doi.org/10.1093/carcin/bgaa014

    Article  CAS  PubMed  Google Scholar 

  9. Matsui T, Hayashi-Kisumi F, Kinoshita Y et al (2004) Identification of novel keratinocyte-secreted peptides dermokine-alpha/-beta and a new stratified epithelium-secreted protein gene complex on human chromosome 19q131. Genomics 84(2):384–397

    Article  CAS  Google Scholar 

  10. Moffatt P, Salois P, St-Amant N, Gaumond MH, Lanctôt C (2004) Identification of a conserved cluster of skin-specific genes encoding secreted proteins. Gene 334:123–131. https://doi.org/10.1016/j.gene.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  11. Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488

    Article  CAS  Google Scholar 

  12. Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  13. Nakazawa S, Shimauchi T, Funakoshi A et al (2020) Suprabasin-null mice retain skin barrier function and show high contact hypersensitivity to nickel upon oral nickel loading. Sci Rep 10(1):14559. https://doi.org/10.1038/s41598-020-71536-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Zheng L, Uchiyama A et al (2018) A data mining paradigm for identifying key factors in biological processes using gene expression data. Sci Rep 8(1):9083. https://doi.org/10.1038/s41598-018-27258-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubash AD, Koetsier JL, Amargo EV, Najor NA, Harmon RM, Green KJ (2013) The GEF Bcr activates RhoA/MAL signaling to promote keratinocyte differentiation via desmoglein-1. J Cell Biol 202(4):653–666. https://doi.org/10.1083/jcb.201304133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renaud S, Pugacheva EM, Delgado MD et al (2007) Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors. Nucleic Acids Res 35(21):7372–7388

    Article  CAS  Google Scholar 

  17. Hong JA, Kang Y, Abdullaev Z et al (2005) Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 65(17):7763–7774. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  18. Klenova EM, Morse HC 3rd, Ohlsson R, Lobanenkov VV (2002) The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12(5):399–414

    Article  CAS  Google Scholar 

  19. Gaykalova D, Vatapalli R, Glazer CA et al (2012) Dose-dependent activation of putative oncogene SBSN by BORIS. PLoS ONE 7(7):e40389. https://doi.org/10.1371/journal.pone.0040389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubackova S, Pribyl M, Kyjacova L et al (2019) Interferon-regulated suprabasin is essential for stress-induced stem-like cell conversion and therapy resistance of human malignancies. Mol Oncol 13(7):1467–1489. https://doi.org/10.1002/1878-0261.12480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Formolo CA, Williams R, Gordish-Dressman H, MacDonald TJ, Lee NH, Hathout Y (2011) Secretome signature of invasive glioblastoma multiforme. J Proteome Res 10(7):3149–3159. https://doi.org/10.1021/pr200210w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nasim F, Sabath BF, Eapen GA (2019) Lung cancer. Med Clin North Am 103(3):463–473. https://doi.org/10.1016/j.mcna.2018.12.006

    Article  PubMed  Google Scholar 

  23. Rodrîguez-Panadero F, Borderas Naranjo F, López Mejîas J (1989) Pleural metastatic tumours and effusions Frequency and pathogenic mechanisms in a post-mortem series. Eur Respir J 2(4):366–369

    PubMed  Google Scholar 

  24. Chernow B, Sahn SA (1977) Carcinomatous involvement of the pleura: an analysis of 96 patients. Am J Med 63(5):695–702. https://doi.org/10.1016/0002-9343(77)90154-1

    Article  CAS  PubMed  Google Scholar 

  25. Sheng SH, Zhu HL (2014) Proteomic analysis of pleural effusion from lung adenocarcinoma patients by shotgun strategy. Clin Transl Oncol 16(2):153–157. https://doi.org/10.1007/s12094-013-1054-9

    Article  CAS  PubMed  Google Scholar 

  26. Garg M, Tudor-Green B, Bisase B (2019) Current thinking in the management of adenoid cystic carcinoma of the head and neck. Br J Oral Maxillofac Surg 57(8):716–721

    Article  Google Scholar 

  27. Coca-Pelaz A, Rodrigo JP, Bradley PJ et al (2015) Adenoid cystic carcinoma of the head and neck–an update. Oral Oncol 51(7):652–661. https://doi.org/10.1016/j.oraloncology.2015.04.005

    Article  PubMed  Google Scholar 

  28. Spiro RH, Huvos AG, Strong EW (1974) Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases. Am J Surg 128(4):512–520. https://doi.org/10.1016/0002-9610(74)90265-7

    Article  CAS  PubMed  Google Scholar 

  29. Short MW, Burgers KG, Fry VT (2017) Esophageal cancer. Am Fam Physician 95(1):22–28

    PubMed  Google Scholar 

  30. Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19(34):5598–5606. https://doi.org/10.3748/wjg.v19.i34.5598

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lu CL, Lang HC, Luo JC et al (2010) Increasing trend of the incidence of esophageal squamous cell carcinoma, but not adenocarcinoma, in Taiwan. Cancer Causes Control 21(2):269–274. https://doi.org/10.1007/s10552-009-9458-0

    Article  PubMed  Google Scholar 

  32. Fan YJ, Song X, Li JL et al (2008) Esophageal and gastric cardia cancers on 4238 Chinese patients residing in municipal and rural regions: a histopathological comparison during 24-year period. World J Surg 32(9):1980–1988. https://doi.org/10.1007/s00268-008-9674-x

    Article  PubMed  Google Scholar 

  33. Chu LY, Peng YH, Weng XF, Xie JJ, Xu YW (2020) Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J Gastroenterol 26(15):1708–1725. https://doi.org/10.3748/wjg.v26.i15.1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lagergren J, Smyth E, Cunningham D, Lagergren P (2017) Oesophageal cancer. Lancet 390(10110):2383–2396

    Article  Google Scholar 

  35. Rustgi AK, El-Serag HB (2014) Esophageal carcinoma. N Engl J Med 371(26):2499–2509

    Article  Google Scholar 

  36. Lao-Sirieix P, Fitzgerald RC (2012) Screening for oesophageal cancer. Nat Rev Clin Oncol 9(5):278–287. https://doi.org/10.1038/nrclinonc.2012.35

    Article  PubMed  Google Scholar 

  37. Gerson LB, Groeneveld PW, Triadafilopoulos G (2004) Cost-effectiveness model of endoscopic screening and surveillance in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol 2(10):868–879. https://doi.org/10.1016/s1542-3565(04)00394-5

    Article  PubMed  Google Scholar 

  38. Jiang S, Zhang Q, Su Y, Pan L (2018) Network-based differential analysis to identify molecular features of tumorigenesis for esophageal squamous carcinoma. Molecules 23(1):88. https://doi.org/10.3390/molecules23010088

    Article  CAS  PubMed Central  Google Scholar 

  39. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18. https://doi.org/10.1053/sonc.2002.37263

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Dabrosin C, Yin X et al (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35(Suppl):S224–S243

    Article  Google Scholar 

  41. Lopes-Coelho F, Martins F, Pereira SA, Serpa J (2021) Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci 22(7):3765

    Article  CAS  Google Scholar 

  42. Sturtzel C (2017) Endothelial cells. Adv Exp Med Biol 1003:71–91. https://doi.org/10.1007/978-3-319-57613-8_4

    Article  CAS  PubMed  Google Scholar 

  43. Krüger-Genge A, Blocki A, Franke RP, Jung F (2019) Vascular endothelial cell biology: an update. Int J Mol Sci 20(18):4411

    Article  Google Scholar 

  44. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62(18):5381–5385

    CAS  PubMed  Google Scholar 

  45. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000. https://doi.org/10.1016/S0002-9440(10)64920-6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693. https://doi.org/10.1038/nm0603-685

    Article  CAS  PubMed  Google Scholar 

  47. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2(3):a006536. https://doi.org/10.1101/cshperspect.a006536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, Niewiarowska J (2020) Endothelial cells in the tumor microenvironment. Adv Exp Med Biol 1234:71–86. https://doi.org/10.1007/978-3-030-37184-5_6

    Article  CAS  PubMed  Google Scholar 

  49. Cao Z, Ding BS, Guo P et al (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365

    Article  CAS  Google Scholar 

  50. Cao Z, Scandura JM, Inghirami GG, Shido K, Ding BS, Rafii S (2017) Molecular checkpoint decisions made by subverted vascular niche transform indolent tumor cells into chemoresistant cancer stem cells. Cancer Cell 31(1):110–126

    Article  CAS  Google Scholar 

  51. Brantley-Sieders DM, Dunaway CM, Rao M et al (2011) Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 tumor suppressor function in endothelium. Cancer Res 71(3):976–987

    Article  CAS  Google Scholar 

  52. Cheng HW, Chen YF, Wong JM et al (2017) Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway. J Exp Clin Cancer Res 36(1):27

    Article  Google Scholar 

  53. Ibáñez L, de Mendoza I, Maritxalar Mendia X, García de la Fuente AM, Quindós Andrés G, Aguirre Urizar JM (2020) Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review. J Periodontal Res 55(1):13–22. https://doi.org/10.1111/jre.12691

    Article  Google Scholar 

  54. Yao L, Jermanus C, Barbetta B et al (2010) Porphyromonas gingivalis infection sequesters pro-apoptotic bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 25(2):89–101. https://doi.org/10.1111/j.2041-1014.2010.00569.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mao S, Park Y, Hasegawa Y et al (2007) Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol 9(8):1997–2007. https://doi.org/10.1111/j.1462-5822.2007.00931.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan C, Xu X, Tan L, Lin L, Pan Y (2014) The effects of Porphyromonas gingivalis on the cell cycle progression of human gingival epithelial cells. Oral Dis 20(1):100–108. https://doi.org/10.1111/odi.12081

    Article  CAS  PubMed  Google Scholar 

  57. Inaba H, Sugita H, Kuboniwa M et al (2014) Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 16(1):131–145. https://doi.org/10.1111/cmi.12211

    Article  CAS  PubMed  Google Scholar 

  58. Liu S, Zhou X, Peng X et al (2020) Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J Immunol 205(1):282–289. https://doi.org/10.4049/jimmunol.1901138

    Article  CAS  PubMed  Google Scholar 

  59. Liu B, Huang G, Zhu H et al (2019) Analysis of gene co-expression network reveals prognostic significance of CNFN in patients with head and neck cancer. Oncol Rep 41(4):2168–2180. https://doi.org/10.3892/or.2019.7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang H, Liu J, Li J et al (2020) Identification of gene modules and hub genes in colon adenocarcinoma associated with pathological stage based on WGCNA analysis. Cancer Genet 242:1–7. https://doi.org/10.1016/j.cancergen.2020.01.052

    Article  CAS  PubMed  Google Scholar 

  61. Campos D, Freitas D, Gomes J et al (2015) Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics 14(6):1616–1629. https://doi.org/10.1074/mcp.M114.046862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furie R, Cervera R (2017) Systemic lupus erythematosus. Best Pract Res Clin Rheumatol 31(3):289–290

    Article  Google Scholar 

  63. Oku K, Atsumi T (2018) Systemic lupus erythematosus: nothing stale her infinite variety. Mod Rheumatol 28(5):758–765

    Article  Google Scholar 

  64. Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y (2015) Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med 13:43

    Article  Google Scholar 

  65. Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narváez A et al (2007) Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum 56(4):1242–1250. https://doi.org/10.1002/art.22451

    Article  CAS  PubMed  Google Scholar 

  66. Hanly JG (2014) Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol 10(6):338–347. https://doi.org/10.1038/nrrheum.2014.15

    Article  CAS  PubMed  Google Scholar 

  67. Moore E, Huang MW, Putterman C (2020) Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Curr Opin Rheumatol 32(2):152–158

    Article  CAS  Google Scholar 

  68. Ushigusa T, Ichinose K, Sato S et al (2016) Soluble α-klotho is a potential biomarker associated with neuropsychiatric systemic lupus erythematosus. Clin Immunol 165:29–34. https://doi.org/10.1016/j.clim.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  69. Avena-Woods C (2017) Overview of atopic dermatitis. Am J Manag Care 23(8 Suppl):S115–S123

    PubMed  Google Scholar 

  70. Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA (2017) The burden of atopic dermatitis: summary of a report for the national eczema association. J Invest Dermatol 137(1):26–30

    Article  CAS  Google Scholar 

  71. Sakabe J, Kamiya K, Yamaguchi H et al (2014) Proteome analysis of stratum corneum from atopic dermatitis patients by hybrid quadrupole-orbitrap mass spectrometer. J Allergy Clin Immunol 134(4):957–60.e8. https://doi.org/10.1016/j.jaci.2014.07.054

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Zheng L, Uchiyama A et al (2018) A data mining paradigm for identifying key factors in biological processes using gene expression data. Sci Rep 8(1):9083. https://doi.org/10.1038/s41598-018-27258-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. David Boothe W, Tarbox JA, Tarbox MB (2017) Atopic dermatitis: pathophysiology. Adv Exp Med Biol 1027:21–37. https://doi.org/10.1007/978-3-319-64804-0_3

    Article  CAS  PubMed  Google Scholar 

  74. Howell MD, Kim BE, Gao P et al (2009) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 124(3 Suppl 2):R7–R12. https://doi.org/10.1016/j.jaci.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  75. Brunner PM, Guttman-Yassky E, Leung DY (2017) The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol 139(4S):S65–S76. https://doi.org/10.1016/j.jaci.2017.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mori T, Ishida K, Mukumoto S et al (2010) Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis. Br J Dermatol 162(1):83–90. https://doi.org/10.1111/j.1365-2133.2009.09440.x

    Article  CAS  PubMed  Google Scholar 

  77. Yamaguchi H, Hirasawa N, Asakawa S, Okita K, Tokura Y (2015) Intrinsic atopic dermatitis shows high serum nickel concentration. Allergol Int 64(3):282–284. https://doi.org/10.1016/j.alit.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  78. Yamaguchi H, Kabashima-Kubo R, Bito T et al (2013) High frequencies of positive nickel/cobalt patch tests and high sweat nickel concentration in patients with intrinsic atopic dermatitis. J Dermatol Sci 72(3):240–245. https://doi.org/10.1016/j.jdermsci.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  79. Winter S, Shoaie S, Kordasti S, Platzbecker U (2020) Integrating the “Immunome” in the stratification of myelodysplastic syndromes and future clinical trial design. J Clin Oncol 38(15):1723–1735. https://doi.org/10.1200/JCO.19.01823

    Article  CAS  PubMed  Google Scholar 

  80. Adès L, Itzykson R, Fenaux P (2014) Myelodysplastic syndromes. Lancet 383(9936):2239–2252

    Article  Google Scholar 

  81. Coutré S (2008) Myelodysplastic syndromes: disease overview and therapy options. Manag Care 17(7 Suppl 6):3–8

    PubMed  Google Scholar 

  82. Wang C, Yang Y, Gao S et al (2018) Immune dysregulation in myelodysplastic syndrome: clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol 122:123–132

    Article  Google Scholar 

  83. Chrastinová L, Pastva O, Bocková M et al (2019) A new approach for the diagnosis of myelodysplastic syndrome subtypes based on protein interaction analysis. Sci Rep 9(1):12647

    Article  Google Scholar 

  84. Pribyl M, Hubackova S, Moudra A et al (2020) Aberrantly elevated suprabasin in the bone marrow as a candidate biomarker of advanced disease state in myelodysplastic syndromes. Mol Oncol 14(10):2403–2419. https://doi.org/10.1002/1878-0261.12768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Santini V (2019) How I treat MDS after hypomethylating agent failure. Blood 133(6):521–529. https://doi.org/10.1182/blood-2018-03-785915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 345 Talent Project of Shengjing Hospital of China Medical University.

Author information

Authors and Affiliations

Authors

Contributions

HT and ZL designed the study. HT performed the literature search and drafted the manuscript. LW participated in language editing. ZL reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhen Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Wang, L. & Liu, Z. Suprabasin: Role in human cancers and other diseases. Mol Biol Rep 49, 1453–1461 (2022). https://doi.org/10.1007/s11033-021-06897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06897-7

Keywords

Navigation