Skip to main content

Advertisement

Log in

Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang R, Meng Z, Wu X, Zhang M, Zhang S, Jin T (2021) Mortalin promotes breast cancer malignancy. Exp Mol Pathol 118:104593

    CAS  PubMed  Google Scholar 

  2. Cho N (2021) Imaging features of breast cancer molecular subtypes: state of the art. J Pathol Transl Med 55:16–25

    PubMed  Google Scholar 

  3. Ravnik-Glavač M, Glavač D (2020) Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int J Mol Sci 21:1714

    PubMed Central  Google Scholar 

  4. Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP (2018) The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 18:133–145

    CAS  PubMed  Google Scholar 

  5. Roser AE, Caldi Gomes L, Schünemann J, Maass F and Lingor P (2018) Circulating miRNAs as diagnostic biomarkers for Parkinson’s disease. Front Neurosci 12

  6. Ritter A, Hirschfeld M, Berner K et al (2020) Circulating non-coding RNA-biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 56:47–68

    CAS  PubMed  Google Scholar 

  7. Alimirzaie S, Bagherzadeh M, Akbari MR (2019) Liquid biopsy in breast cancer: a comprehensive review. Clin Genet 95:643–660

    CAS  PubMed  Google Scholar 

  8. Long X, Shi Y, Ye P, Guo J, Zhou Q and Tang Y (2020) MicroRNA-99a suppresses breast cancer progression by targeting FGFR3. Front Oncol 9

  9. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Keklikoglou I, Koerner C, Schmidt C et al (2012) MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31:4150–4163

    CAS  PubMed  Google Scholar 

  11. Xue X, Yang YA, Zhang A et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35:2746–2755

    CAS  PubMed  Google Scholar 

  12. Li W, Zhai L, Wang H et al (2016) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7:27778–27786

    PubMed  PubMed Central  Google Scholar 

  13. Lee I, Baxter D, Lee MY, Scherler K, Wang K (2017) The importance of standardization on analyzing circulating RNA. Mol Diagn Ther 21:259–268

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zidan HE, Karam RA, El-Seifi OS, Abd Elrahman TM (2018) Circulating long non-coding RNA MALAT1 expression as molecular biomarker in Egyptian patients with breast cancer. Cancer Genet 220:32–37

    CAS  PubMed  Google Scholar 

  15. Metzenmacher M, Váraljai R, Hegedüs B et al (2020) Plasma next generation sequencing and droplet digital-qPCR-based quantification of circulating cell-free RNA for noninvasive early detection of cancer. Cancers 12:353

    CAS  PubMed Central  Google Scholar 

  16. Otandault A, Anker P, Al Amir Dache Z et al (2019) Recent advances in circulating nucleic acids in oncology. Ann Oncol 30:374–384

    CAS  PubMed  Google Scholar 

  17. Enguita FJ (2019) New promising circulating RNA biomarkers for early diagnosis of lung adenocarcinoma. Ann Transl Med 7:S130–S130

    PubMed  PubMed Central  Google Scholar 

  18. Kallergi G, Agelaki S, Papadaki MA et al (2015) Expression of truncated human epidermal growth factor receptor 2 on circulating tumor cells of breast cancer patients. Breast Cancer Res 17:113

    PubMed  PubMed Central  Google Scholar 

  19. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chevillet JR, Lee I, Briggs HA, He Y, Wang K (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–6105

    PubMed  PubMed Central  Google Scholar 

  22. Macfarlane L-A, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Inukai S, Slack F (2013) MicroRNAs and the genetic network in aging. J Mol Biol 425:3601–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh R, Mo YY (2013) Role of microRNAs in breast cancer. Cancer Biol Ther 14:201–212

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Arif KMT, Elliott EK, Haupt LM, Griffiths LR (2020) Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers 12:2922

    CAS  PubMed Central  Google Scholar 

  27. Cui M, Wang H, Yao X et al (2019) Circulating microRNAs in cancer: potential and challenge. Front Genet 10:626

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shigeyasu K, Toden S, Zumwalt TJ, Okugawa Y, Goel A (2017) Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin Cancer Res 23:2391–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowery AJ, Miller N, Devaney A et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11:R27

    PubMed  PubMed Central  Google Scholar 

  30. Pal MK, Jaiswar SP, Dwivedi VN, Tripathi AK, Dwivedi A, Sankhwar P (2015) MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med 12:328–341

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    CAS  PubMed  Google Scholar 

  32. Hammond SM (2007) MicroRNAs as tumor suppressors. Nat Genet 39:582–583

    CAS  PubMed  Google Scholar 

  33. Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214

    PubMed  PubMed Central  Google Scholar 

  34. Uhr K, Prager-van der Smissen WJC, Heine AAJ et al (2019) MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS ONE 14, e0216400

  35. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li S, Li Q, Lü J et al (2020) Targeted Inhibition of miR-221/222 promotes cell sensitivity to cisplatin in triple-negative breast cancer MDA-MB-231 cells. Front Genet 10

  37. Ke K, Lou T (2017) MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncol Lett 14:5994–6000

    PubMed  PubMed Central  Google Scholar 

  38. Newie I, Søkilde R, Persson H et al (2016) HER2-encoded mir-4728 forms a receptor-independent circuit with miR-21-5p through the non-canonical poly(A) polymerase PAPD5. Sci Rep 6:35664

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindholm EM, Leivonen SK, Undlien E et al (2019) miR-342-5p as a potential regulator of HER2 breast cancer cell growth. Microrna 8:155–165

    CAS  PubMed  Google Scholar 

  40. Ebrahimi A, Nikokar I, Zokaei M, Bozorgzadeh E (2018) Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in triple negative breast cancer. Talanta 189:592–598

    CAS  PubMed  Google Scholar 

  41. Tan S, Ding K, Li R et al (2014) Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Res 16:R40

    PubMed  PubMed Central  Google Scholar 

  42. Kim J, Yao F, Xiao Z, Sun Y, Ma L (2018) MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev 37:5–15

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan YC, Banerjee J, Choi SY and Sen CK (2012) miR-210: the master hypoxamir. Microcirculation (New York, 1994) 19, 215–223

  44. Li XJ, Ren ZJ, Tang JH, Yu Q (2017) Exosomal MicroRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem 44:1741–1748

    CAS  PubMed  Google Scholar 

  45. Lin Z-J, Ming J, Yang L, Du J-Z, Wang N, Luo H-J (2016) Mechanism of regulatory effect of microRNA-206 on Connexin 43 in distant metastasis of breast cancer. Chin Med J 129:424–434

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren K, Li T, Zhang W, Ren J, Li Z, Wu G (2016) miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci 23:79

    PubMed  PubMed Central  Google Scholar 

  47. Croset M, Pantano F, Kan CWS et al (2018) MicroRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res canres.3058.2017

  48. Pimentel F, Bonilla P, Ravishankar YG et al (2015) Technology in MicroRNA profiling: circulating microRNAs as noninvasive cancer biomarkers in breast cancer. J Lab Autom 20:574–588

    CAS  PubMed  Google Scholar 

  49. Donati S, Ciuffi S, Brandi ML (2019) Human circulating miRNAs real-time qRT-PCR-based analysis: an overview of endogenous reference genes used for data normalization. Int J Mol Sci 20:4353

    CAS  PubMed Central  Google Scholar 

  50. Pagacz K, Kucharski P, Smyczynska U, Grabia S, Chowdhury D, Fendler W (2020) A systemic approach to screening high-throughput RT-qPCR data for a suitable set of reference circulating miRNAs. BMC Genomics 21:111

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma P, Ni K, Ke J, Zhang W, Feng Y, Mao Q (2018) miR-448 inhibits the epithelial-mesenchymal transition in breast cancer cells by directly targeting the E-cadherin repressor ZEB1/2. Exp Biol Med 243:473–480

    CAS  Google Scholar 

  52. Kolanowska M, Kubiak A, Jażdżewski K, Wójcicka A (2018) MicroRNA analysis using next-generation sequencing. Methods Mol Biol 1823:87–101

    CAS  PubMed  Google Scholar 

  53. Eminaga S, Christodoulou DC, Vigneault F, Church GM and Seidman JG (2013) Quantification of microRNA expression with next-generation sequencing. Curr Protoc Mol Biol Chapter 4, Unit 4.17

  54. Coenen-Stass AML, Magen I, Brooks T et al (2018) Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol 15:1133–1145

    PubMed  PubMed Central  Google Scholar 

  55. Gautam A, Kumar R, Dimitrov G, Hoke A, Hammamieh R, Jett M (2016) Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol Biol Rep 43:1165–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang T, Hu H, Yan G et al (2019) Long non-coding RNA and breast cancer. Technol Cancer Res Treat 18:1533033819843889–1533033819843889

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, Zhang Y, Lu J (2020) The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 11:749

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Carlevaro-Fita J, Lanzós A, Feuerbach L et al (2020) Cancer LncRNA census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Communications Biology 3:56

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Butt G, Shahwar D, Qureshi MZ et al (2019) Role of mTORC1 and mTORC2 in breast cancer: therapeutic targeting of mTOR and its partners to overcome metastasis and drug resistance.

  60. Wang L, Cho KB, Li Y, Tao G, Xie Z and Guo B (2019) Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci 20

  61. Mathias C, Zambalde EP, Rask P, Gradia DF, de Oliveira JC (2019) Long non-coding RNAs differential expression in breast cancer subtypes: what do we know? Clin Genet 95:558–568

    CAS  PubMed  Google Scholar 

  62. Yang F, Shen Y, Zhang W et al (2018) An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ 25:2209–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu X, Liu Y, Du Y, Cheng T, Xia W (2019) Long non-coding RNA BLACAT1 promotes breast cancer cell proliferation and metastasis by miR-150-5p/CCR2. Cell Biosci 9:14

    PubMed  PubMed Central  Google Scholar 

  64. Qu R, Hu C, Tang Y, Yu Q, Shi G (2020) Long non-coding RNA BLACAT1 induces Tamoxifen resistance in human breast cancer by regulating miR-503/Bcl-2 Axis. Cancer Manag Res 12:1771–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng L, Zhang Y, Fu Y et al (2019) Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339–5p and promotes poor prognosis in breast cancer. Biosci Rep 39

  66. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S (2016) MALAT1 long non-coding RNA in cancer. Biochim Biophys Acta 1859:192–199

    CAS  PubMed  Google Scholar 

  67. Guzel E, Okyay TM, Yalcinkaya B, Karacaoglu S, Gocmen M, Akcakuyu MH (2020) Tumor suppressor and oncogenic role of long non-coding RNAs in cancer. North Clin Istanb 7:81–86

    PubMed  Google Scholar 

  68. Do H and Kim W (2018) Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform 16, e18

  69. Qi P, X-y Z, Du X (2016) Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15:39

    PubMed  PubMed Central  Google Scholar 

  70. Zhang X, Zhou Y, Mao F, Lin Y, Shen S, Sun Q (2020) lncRNA AFAP1-AS1 promotes triple negative breast cancer cell proliferation and invasion via targeting miR-145 to regulate MTH1 expression. Sci Rep 10:7662

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang YL, Liu LC, Hung Y et al (2019) Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast 46:64–69

    PubMed  Google Scholar 

  72. Su X, Malouf GG, Chen Y et al (2014) Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget 5:9864–9876

    PubMed  PubMed Central  Google Scholar 

  73. Van Grembergen O, Bizet M, de Bony EJ et al (2016) Portraying breast cancers with long noncoding RNAs. Sci Adv 2, e1600220

  74. Campos-Parra AD, López-Urrutia E, Orozco Moreno LT et al (2018) Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci 19:2711

    PubMed Central  Google Scholar 

  75. Li J, Chen C, Ma X et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:11730

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi Q, Li Y, Li S et al (2020) LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun 11:5513–5513

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu J, Jin T, Zhang T (2020) Suppression of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) potentiates cell apoptosis and drug sensitivity to taxanes and Adriamycin in breast cancer. Med Sci Monitor 26:e922672–e922672

    CAS  Google Scholar 

  78. Zhang H, Zhang X-Y, Kang X-N, Jin L-J, Wang Z-Y (2020) LncRNA-SNHG7 enhances chemotherapy resistance and cell viability of breast cancer cells by regulating miR-186. Cancer Manag Res 12:10163–10172

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu HY, Bai WD, Ye XM, Yang AG, Jia LT (2018) Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1. Biochem Biophys Res Commun 496:1308–1313

    CAS  PubMed  Google Scholar 

  80. Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Can Res 77:3965

    CAS  Google Scholar 

  81. Liu Y, Dou M, Song X et al (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18:123

    PubMed  PubMed Central  Google Scholar 

  82. Cheng Y, Wang Q, Jiang W et al (2019) Emerging roles of piRNAs in cancer: challenges and prospects. Aging 11:9932–9946

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hashim A, Rizzo F, Marchese G et al (2014) RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget 5:9901–9910

    PubMed  PubMed Central  Google Scholar 

  84. Li B, Hong J, Hong M et al (2019) piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene 38:5227–5238

    CAS  PubMed  Google Scholar 

  85. Maleki Dana P, Mansournia MA, Mirhashemi SM (2020) PIWI-interacting RNAs: new biomarkers for diagnosis and treatment of breast cancer. Cell Biosci 10:44–44

    PubMed  PubMed Central  Google Scholar 

  86. Wang Z, Liu N, Shi S, Liu S, Lin H (2016) The role of PIWIL4, an Argonaute family protein, in breast cancer. J Biol Chem 291:10646–10658

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding X, Li Y, Lü J et al (2021) piRNA-823 is involved in cancer stem cell regulation through altering dna methylation in association with luminal breast cancer. Front Cell Dev Biol 9:641052

    PubMed  PubMed Central  Google Scholar 

  88. Xu X, Zhang M, Xu F, Jiang S (2020) Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 19:165

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Iliev R, Fedorko M, Machackova T et al (2016) Expression levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Res 36:6419–6423

    CAS  PubMed  Google Scholar 

  90. Tan L, Mai D, Zhang B et al (2019) PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer. https://doi.org/10.1186/s12943-019-0940-3

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hawkes WC, Printsev I, Alkan Z (2012) Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells. J Cell Biochem 113:61–69

    CAS  PubMed  Google Scholar 

  92. Sharma M (2013) Apoptosis-antagonizing transcription factor (AATF) gene silencing: role in induction of apoptosis and down-regulation of estrogen receptor in breast cancer cells. Biotechnol Lett 35:1561–1570

    CAS  PubMed  Google Scholar 

  93. Zhou H-N, Ren Y-X, Li L, Wang K-S, Jiao Z-Y (2018) Function of Rho GTPase activating protein 11A in tumors. Chin Med J 131:1365–1366

    PubMed  PubMed Central  Google Scholar 

  94. Luoh SW, Venkatesan N, Tripathi R (2004) Overexpression of the amplified Pip4k2beta gene from 17q11-12 in breast cancer cells confers proliferation advantage. Oncogene 23:1354–1363

    CAS  PubMed  Google Scholar 

  95. Fu A, Jacobs DI, Hoffman AE, Zheng T, Zhu Y (2015) PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis 36:1094–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang H, Ren Y, Xu H et al (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22:217–223

    PubMed  Google Scholar 

  97. Xue Z, Zhou Y, Wang C et al (2016) Latexin exhibits tumor-suppressor potential in pancreatic ductal adenocarcinoma. Oncol Rep 35:50–58

    CAS  PubMed  Google Scholar 

  98. Huang G, Hu H, Xue X et al (2013) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15:563–568

    CAS  PubMed  Google Scholar 

  99. Ding X, Li Y, Lü J et al (2021) piRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol 9:641052

    PubMed  PubMed Central  Google Scholar 

  100. Tan L, Mai D, Zhang B et al (2019) PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer 18(1):9

    PubMed  PubMed Central  Google Scholar 

  101. Hawkes WC, Printsev I, Alkan Z (2012) Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells. J Cell Biochem 113(1):61–69

    CAS  PubMed  Google Scholar 

  102. Fu A, Jacobs DI, Hoffman AE et al (2015) PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinog 36(10):1094–1102

    CAS  Google Scholar 

  103. Zhang H, Ren Y, Xu H (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22(4):217–223

    Google Scholar 

  104. Huang G, Hu H, Xue X et al (2013) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15(7):563–568

    CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the data and review of the manuscript; HH and MM Co-wrote the paper, AE supervised the project and co-wrote the paper.

Corresponding author

Correspondence to Ammar Ebrahimi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinalizadeh, H., Mahmoodpour, M. & Ebrahimi, A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 49, 705–715 (2022). https://doi.org/10.1007/s11033-021-06847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06847-3

Keywords

Navigation