Skip to main content
Log in

Molecular genotypic diversity of populations of brinjal shoot and fruit borer, Leucinodes orbonalis and development of SCAR marker for pesticide resistance

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The brinjal shoot and fruit borer, Leucinodes orbonalis is a destructive pest of Solanum melongena. The control of L. orbonalis with extensive application of synthetic chemical insecticides resulted in the development of resistance with known genetic heterogeneity among populations. Understanding the genetic diversity of their populations is important in developing strategies for their management. The present investigation was performed to characterize populations of L. orbonalis for their genetic diversity in the entire region of Tamil Nadu, South India using random amplified polymorphic DNA (RAPD) primers as a tool of the molecular marker.

Methods and results

Among 60 random 10-mer primers, only ten primers generated reproducible and scorable banding profile. Among the ten different random primers, the primers namely OPG 7, OPG 8, OPS 2 and OPS 7 generated the highest genetic variation with over 80% genetic polymorphism. Phylogram analysis produced 18 clusters with eight major and ten minor clusters. Cluster analysis, statistical fitness, population structure and analysis of molecular variance confirmed the significant genetic variation among different populations. A trait specific marker obtained through RAPD was cloned, sequenced and used to develop a stable diagnostic SCAR marker for DNA fingerprinting to distinguish the populations. Amplification of this locus in the samples of 20 different populations indicated recognition of the trait for pesticide resistance in 12 populations.

Conclusions

The results suggest that the biochemical nature of host plant varieties of this insect pest and variation in the application of different insecticides are essential contributing factors for the genotypic variations observed among populations of L. orbonalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yadav DK, Singh NN, Mishra VK, Singh SK (2015) Bioefficacy of certain newer insecticides against brinjal shoot and fruit borer, (Leucinodes orbonalis Guen.). J Entomol Res 39:25–30

    Google Scholar 

  2. Alam SN, Rashid MA, Rouf FMA, Jhala RC, Patel JR, Satpathy S, Shivalingaswamy TM, Rai S, Wahundeniya I, Cork A, Ammaranan C (2003) Development of an integrated pest management strategy for eggplant fruit and shoot borer in South Asia. Technical Bulletin no. 28, AVRDC publication no. 03–548, AVRDC-World Vegetable Center, Shanhua, Taiwan, pp 56

  3. Prodhan MZH, Hasan MT, Chowdhury MMI, Alam MS, Rahman ML, Azad AK, Hossain MJ, Naranjo SE, Shelton AM (2018) Bt eggplant (Solanum melongena L) in Bangladesh: Fruit production and control of eggplant fruit and shoot borer (Leucinodes orbonalis Guenee), effects on non-target arthropods and economic returns. PLoS One 13(11):e0205713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eswara R, Srinivasa SG (2004) Management of shoot and fruit borer, Leucinodes orbonalis (Guen.) in brinjal using botanicals/oils. Pestology 28:50–52

    Google Scholar 

  5. Kariyanna B, Prabhuraj A, Mohan M, Bheemanna M, Basavaraj Kalmath PY, Diwan JR (2020) Insecticide usage pattern and evolution of resistance in eggplant shoot and fruit borer, Leucinodes orbonalis guenée (lepidoptera: crambidae) in India. Plant Arch 20(2):1255–1261

    Google Scholar 

  6. Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413

    Article  Google Scholar 

  7. Kariyanna B, Prabhuraj A, Asokan R, Ramkumar G, Venkatesan T, Gracy RG, Mohan M (2020) Genome mining and functional analysis of cytochrome P450 genes involved in insecticide resistance in Leucinodes orbonalis (Lepidoptera: Crambidae). Biotechnol Appl Biochem

  8. Challa N, Singh M, Bharadwaj RK, Sharma R, Gaikwad MB, Thakur P (2021) Characterization of eggplant genotypes for different resistance mechanisms against Leucinodes orbonalis. Neotrop Entomol 1–11

  9. Smith TB, Wayne RK (1996) Molecular genetic approaches in conservation. Oxford University Press, New York

    Google Scholar 

  10. Symondson WOC, Liddell JE (1996) A species-specific monoclonal antibody system for detecting the remains of field slugs, Deroceras reticulatum (Muller) (Mollusca: Pulmonata), in carabid beetles (Coleoptera: Carabidae). Biocontrol Sci Technol 6:91–100

    Article  Google Scholar 

  11. Lopes HM, Bastos CS, Boiteux LS, Foresti J, Suinaga FA (2017) A RAPD-PCR-based genetic diversity analysis of Helicoverpa armigera and H. zea populations in Brazil. Genet Mol Res 16(3):16038757

    Article  Google Scholar 

  12. Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Bio Evol 34(11):2762–2772

    Article  CAS  Google Scholar 

  13. Singh S, Mishra VK, Bhoi TK (2017) Insect molecular markers and its utility-a review. Int J Agric Environ Biotechnol 10(4):469–479

    Article  Google Scholar 

  14. Karthikeyan KAM, Vijayakumar I, Murali P, Suresh P, Janarthanan S (2005) Detection of genetic polymorphism in the populations of brinjal shoot and fruit borer, Leucinodes orbonalis (Guenee). Indian J Exp Biol 43:548–551

    CAS  PubMed  Google Scholar 

  15. Geetharajalakshmi S, Subramanian S, Shanmugasundaram PS, Mohankumar S (2006) Molecular analysis of Leucinodes orbonalis Guen. populations within Tamil Nadu using lepidopteran specific random primers. Pest Manag Hortic Ecosyst 12:29–36

    Google Scholar 

  16. Marimuthu M, Perumal Y, Salim AP, Sharma G (2009) Genetic similarity of eggplant shoot and fruit borer, Leucinodes orbonalis, populations. DNA Cell Biol 28:599–603

    Article  CAS  PubMed  Google Scholar 

  17. Ghante VN, Kumar LR, Chowdary LR, Poornima R, Kisan B, Bheemanna M, Arunkumar H (2013) Detection of genetic variation in brinjal shoot and fruit borer (Leucinodes orbonalis G.) populations using RAPD markers. BIOINFOLET-A Q J Life Sci 10:1208–1210

    Google Scholar 

  18. Kariyanna B, Prabhuraj A, Asokan R, Babu P, Jalali SK, Venkatesan T, Gracy RG, Mohan M (2020) Identification of suitable reference genes for normalization of RT-qPCR data in eggplant fruit and shoot borer (Leucinodes orbonalis Guenée). Biologia 75(2):289–297

    Article  CAS  Google Scholar 

  19. Lima LHC, Návia D, Inglis PW, de Oliveira MRV (2000) Survey of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotypes in Brazil using RAPD markers. Genet Mol Biol 23:781–785

    Article  Google Scholar 

  20. Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J (2012) PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:670–672

    Article  CAS  PubMed  Google Scholar 

  21. Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  22. Real R (1999) Tables of significant values of Jaccard’s index of similarity. Misc Zool 22:29–40

    Google Scholar 

  23. Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jolliffe IT (2002) Principal components as a small number of interpretable variables: some examples. In: Principal component analysis, Springer series in statistics, Springer, New York, pp 63–77

  25. Legendre P, Legendre LFJ (2012) Numerical ecology, 3rd edn. Elsevier, Oxford

    Google Scholar 

  26. McGarigal K, Cushman SA, Stafford S (2013) Multivariate statistics for wildlife and ecology research, Springer Science & Business Media, Springer-Verlag, New York

  27. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karandikar RL (2006) On the markov chain monte carlo (MCMC) method. Sadhana 31:81–104

    Article  Google Scholar 

  29. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  30. Corrêa AS, Cordeiro EM, Omoto C (2019) Agricultural insect hybridization and implications for pest management. Pest manag sci 75(11):2857–2864

    Article  PubMed  Google Scholar 

  31. Futuyma DJ, Peterson SC (1985) Genetic variation in the use of resources by insects. Annu Rev Entomol 30:217–238

    Article  Google Scholar 

  32. Miles LS, Rivkin LR, Johnson MT, Munshi-South J, Verrelli BC (2019) Gene flow and genetic drift in urban environments. Mol Ecol 28(18):4138–4151

    Article  PubMed  Google Scholar 

  33. Kaiser TS, von Haeseler A, Tessmar-Raible K, Heckel DG (2021) Timing strains of the marine insect Clunio marinus diverged and persist with gene flow. Mol Ecol 30(5):1264–1280

    Article  CAS  PubMed  Google Scholar 

  34. Beeman RW, Brown SJ (1999) RAPD-based genetic linkage maps of Tribolium castaneum. Genetics 153:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Infante-Malachias ME, Yotoko KSC, Espin A (1999) Random amplified polymorphic DNA of screwworm fly populations (Diptera : Calliphoridae) from Southeastern Brazil and Northern Argentina. Genome 42:772–779

    Article  CAS  Google Scholar 

  36. Bas B, Dalkilic Z, Peever TL, Nigg HN, Simpson SE, Gmitter FG, Adair RC (2000) Genetic relationships among Florida Diaprepes abbreviatus (Coleoptera: Curculionidae) populations. Ann Entomol Soc Am 93:459–467

    Article  CAS  Google Scholar 

  37. Gill TK, Kumri S, Sharma VL, Badran AA, Kumari M, Sobit RC (2006) Genetic Variation in polymorphic males of Callosobruchus maculatus (Coleoptera: Bruchidae) by RAPD-PCR. Cytologia (Tokyo) 71:57–62

    Article  CAS  Google Scholar 

  38. Yadav SKU, Singh J, Padmanaban B, Kumar LS (2017) Genetic variability in Indian populations of banana corm weevil [Cosmopolites sordidus (Coleoptera: Curculionidae)] assessed by RAPDs and AFLPs. Int J Trop Insect Sci 37(3):149–162

    Article  Google Scholar 

  39. Jain SK, Neekhra B, Pandey D, Jain K (2010) RAPD marker system in insect study: A review. Indian J Biotechnol 9:7–12

    Google Scholar 

  40. Khorsheduzzaman KM, Alam MZ, Rahman MM, Mian MK, Mian MI (2010) Biochemical basis of resistance in eggplant (Solanum melongena L.) to Leucinodes orbonalis Guenée and their correlation with shoot and fruit infestion. Bangladesh J Agric Res 35:149–155

    Article  Google Scholar 

  41. Rameash K, Sivaraj N, Babu BS, Chakrabarty SK (2015) Screening brinjal genotypes for resistance to shoot and fruit borer, Leucinodes orbonalis and analysing the geographic divergence of resistance through divagis. Bioscan 10:923–928

    Google Scholar 

  42. Ashok KR, Chinnadurai M, Raj SV, Sanjeevikumar A (2019) Socio-economic assessment of LMOs: an ex ante analysis of insect resistance and herbicide tolerance in maize and brinjal in Tamil Nadu. Socio-economic impact assessment of genetically modified crops. Springer, pp 101–120

    Chapter  Google Scholar 

  43. Latif MA, Rahman MM, Alam MZ (2010) Efficacy of nine insecticides against shoot and fruit borer, Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae) in eggplant. J Pest Sci 83:391–397

    Article  Google Scholar 

  44. Alam SN, Hossain MI, Rouf FMA, Jhala RC, Patel MG, Rath LK, Sengupta A, Baral K, Shylesha AN, Satpathy S, Shivalingaswamy TM (2006) Implementation and promotion of an IPM strategy for control of eggplant fruit and shoot borer in South Asia. Technical Bulletin no. 36, AVRDC publication no. 06–672, AVRDC, The World Vegetable Center, Shanhua, Taiwan, pp 74

  45. De Vicente MC, Lopez C, Fulton T (2004) Genetic diversity analysis with molecular marker data: learning module. Int Plant Genet Resour Inst

  46. Palraju M, Paulchamy R, Sundaram J (2018) Population genetic structure and molecular diversity of Leucinodes orbonalis based on mitochondrial COI gene sequences. Mitochondrial DNA A 29:1231–1239

    Article  CAS  Google Scholar 

  47. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63

    Article  CAS  PubMed  Google Scholar 

  48. Ranson H, Jensen B, Wang X, Prapanthadara L, Hemingway J, Collin FH (2000) Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9:499–507

    Article  CAS  PubMed  Google Scholar 

  49. Schlipalius DI, Cheng Q, Reilly PE, Collins PJ, Ebert PR (2002) Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics 161:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paran I, Michelmore RW (1993) Development of reliable PCR-base markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  51. Khan M, Pan YB, Iqbal J (2017) Development of an RAPD-based SCAR marker for smut disease resistance in commercial sugarcane cultivars of Pakistan. Crop Prot 94:166–172

    Article  Google Scholar 

  52. Liu X, Cheng J, Mei Z, Wei C, Khan MA, Peng J, Fu J (2020) SCAR marker for identification and discrimination of specific medicinal Lycium chinense Miller from Lycium species from ramp-PCR RAPD fragments. 3 Biotech 10(8):1–7

    Article  Google Scholar 

  53. Fernandez S, Costa AC, Katsuyama AM, Madeira AMBN, Gruber A (2003) A survey of the inter- and intraspecific RAPD markers of Eimeria spp. of the domestic fowl and the development of reliable diagnostic tools. Parasitol Res 89:437–445

    Article  CAS  PubMed  Google Scholar 

  54. Zheng K, Cai Y, Chen W, Gao Y, Jin J, Wang H, Feng S, Lu J (2021) Development, identification, and application of a germplasm specific SCAR marker for Dendrobium officinale Kimura et Migo. Front Plant Sci 12:879

    Article  Google Scholar 

  55. Xu J, Liu J (2018) Development of SCAR markers related to Heterodera filipjevi Xuchang population. Acta Phytopathol Sin 48(2):239–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PM: Conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, visualization, funding acquisition. KH: Methodology, software, validation, formal analysis, investigation, data curation, writing—review and editing, visualization. MR: Conceptualization, methodology, software, formal analysis, data curation, writing—review and editing. AG: Methodology, software, formal analysis, data curation. SB: Methodology, investigation, data curation, writing—review and editing. SJ: Resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Sundaram Janarthanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, P., Hilda, K., Ramakrishnan, M. et al. Molecular genotypic diversity of populations of brinjal shoot and fruit borer, Leucinodes orbonalis and development of SCAR marker for pesticide resistance. Mol Biol Rep 48, 7787–7800 (2021). https://doi.org/10.1007/s11033-021-06791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06791-2

Keywords

Navigation