Skip to main content
Log in

Curcumin inhibition of bleomycin-induced changes in lung collagen synthesis, deposition and assembly

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Idiopathic pulmonary fibrosis is characterized by progressive lung tissue remodeling and disproportionate deposition of collagenous proteins with limited therapeutic interventions. The purpose of this study was to determine whether curcumin inhibits bleomycin (BLM)-induced increases in synthesis, degradation and cross-linking of lung collagen in rats.

Methods and results

Following a single intratracheal instillation of BLM to rats (0.75 U/100 g, sacrificed 3, 5, 7, 14 and 28 days post-BLM), lung collagen synthesis (determined by incorporation of 3H-proline) and deposition (determined by lung hydroxyproline content) progressively increased at days 7, 14 and 28 post-BLM injection. Lung lavage fluid hydroxyproline and collagenase levels (a measure of collagen turnover) were increased in BLM rats compared with control groups. In addition, BLM instillation resulted in increased concentrations of collagenase and collagenolytic cathepsin in the lungs. Furthermore, increased cross-linking (as determined by aldehyde content of acid soluble collagen), and decreased susceptibility of fibrotic lung insoluble collagen to denaturing agents occurred in BLM-injured lungs. Significant increases in alveolar macrophage (AM) release of transforming growth factor-β1 (TGF-β1) were noted at various time points (days 3, 5, 7, 14 and 28 post-BLM) during the development and progression of lung fibrosis in rats. Curcumin treatment to BLM rats (300 mg/kg 10 days before and daily thereafter throughout the experimental time period) was associated with marked reductions in lung collagen synthesis and deposition, BALF and lung collagenase activity, BALF hydroxyproline content and lung collagenolytic levels. Additionally, reduced levels of collagen cross-linking and enhanced susceptibility of insoluble lung collagen to denaturing agents were observed in curcumin-treated BLM rats. Finally, curcumin inhibited BLM-induced increases in AM production of TGF-β1.

Conclusions

Our data demonstrate for the first time that curcumin prevents fibrotic deposits by modulating collagen turnover, assembly and deposition in BLM-instilled rat lungs, and that curcumin treatment protects against BLM activation of macrophages by suppressing the release of TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the manuscript.

References

  1. Crouch E (1990) Pathobiology of pulmonary fibrosis. Am J Physiol 259:L159-184

    CAS  PubMed  Google Scholar 

  2. Snijder J, Peraza J, Padilla M, Capaccione K, Salvatore MM (2019) Pulmonary fibrosis: a disease of alveolar collapse and collagen deposition. Expert Rev Respir Med 13:615–619

    Article  CAS  PubMed  Google Scholar 

  3. Jones MG, Andriotis OG, Roberts JJ et al (2018) Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. Elife 7:e36354

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooper JAD Jr (1997) Drug-induced lung disease. Adv Intern Med 42:231–268

    Google Scholar 

  5. Giri SN, Wang Q (1989) Mechanisms of bleomycin-induced lung injury. Comments Toxicol 3:145–176

    CAS  Google Scholar 

  6. Goldstein RH, Fine A (1986) Fibrotic reactions in the lung: the activation of the lung fibroblast. Exp Lung Res 11:245–261

    Article  CAS  PubMed  Google Scholar 

  7. Clark JG, Overton JE, Marino BA, Uitto J, Starcher BC (1980) Collagen biosynthesis in bleomycin-induced pulmonary fibrosis in hamster. J Lab Clin Med 96:943–953

    CAS  PubMed  Google Scholar 

  8. Kelly J, Newman RA, Evans JN (1980) Bleomycin-induced pulmonary fibrosis in the rat: prevention with an inhibitor of collagen synthesis. J Lab Clin Med 96:954–964

    Google Scholar 

  9. Fulmer JD, Bienkowski RS, Cowan MJ (1980) Collagen concentration and rates of synthesis in idiopathic pulmonary fibrosis. Am Rev Respir Dis 122:289–301

    CAS  PubMed  Google Scholar 

  10. Kirk JM, Da Costa PE, Turner-Warwick M, Littleton RJ, Laurent GJ (1986) Biochemical evidence for an increased and progressive deposition of collagen in lungs of patients with pulmonary fibrosis. Clin Sci 70:39–45

    Article  CAS  Google Scholar 

  11. Selman M, Montano M, Ramos C, Chapela R (1986) Concentration, biosynthesis and degradation of collagen in idiopathic pulmonary fibrosis. Thorax 41:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuhn C 3rd, Boldt J, King TE Jr, Crouch E, Vartio T, McDonald JA (1989) An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140:1693–1703

    Article  PubMed  Google Scholar 

  13. Gauldie J, Jordana M, Cox M (1993) Cytokines and pulmonary fibrosis. Thorax 48:931–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Border WA, Noble NA (1994) Transforming growth factor-β in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  PubMed  Google Scholar 

  15. Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566

    Article  CAS  PubMed  Google Scholar 

  16. Raghu G, Remy-Jardin M, Myers JL, Richeldi, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F et al (2018) Diagnosis of idiopathic pulmonary fibrosis. an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198:e44–e68

    Article  PubMed  Google Scholar 

  17. Hutchinson J, Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46:795–806

    Article  PubMed  Google Scholar 

  18. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, Kasselman LJ, Glass AD, DeLeon J, Reiss AB (2020) Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir Investig 58:320–335

    Article  PubMed  Google Scholar 

  19. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  CAS  PubMed  Google Scholar 

  20. Venkatesan N, Punithavathi D, Babu M (2007) Protection from acute and chronic lung diseases by curcumin. Adv Exp Med Biol 595:379–405

    Article  PubMed  Google Scholar 

  21. Lelli D, Sahebkar A, Johnston TP, Pedone C (2017) Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res 115:133–148

    Article  CAS  PubMed  Google Scholar 

  22. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    Article  CAS  PubMed  Google Scholar 

  23. Punithavathi D, Venkatesan N, Babu M (2000) Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 131:169–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith MR, Gangireddy SR, Narala VR, Hogaboam CM, Standiford TJ, Christensen PJ, Kondapi AK, Reddy RC (2010) Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 298:L616–L625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu Y, Zhang M, Jin Y (2018) Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int J Pharm 551:212–222

    Article  CAS  PubMed  Google Scholar 

  26. Amini P, Saffar H, Nourani MR, Motevaseli E, Najafi M, Ali Taheri R, Qazvini A (2018) Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats. Int J Mol Cell Med. 7(4):212–219

    CAS  PubMed  Google Scholar 

  27. Chun-Bin S, Yi Y, Qin-Yi W, Yang L, Jing-Ze Y, Hai-Jing X, Si-Qi Z, Jiong H, Jing W, Fei-Yu L, Jin-Yuan Y, Jia-Li Y, Yang ZS (2020) The main active components of Curcuma zedoaria reduces collagen deposition in human lung fibroblast via autophagy. Mol Immunol 124:109–116

    Article  CAS  PubMed  Google Scholar 

  28. Ramos C, Montano M, Gonzalez G, Vadillo F, Selman M (1988). Collagen metabolism in experimental lung silicosis. A trimodal behaviour of collagenolysis. Lung 166:347-353

  29. Rojkind M, Gonzalez E (1974) An improved method for determining specific radioactivities of proline-14C and hydroxyproline-14C in collagen and in noncollagenous proteins. Anal Biochem 57:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  CAS  PubMed  Google Scholar 

  31. Neuman RE, Logan MA (1950) Determination of collagen and elastin in tissues. J Biol Chem 186:549–556

    Article  CAS  PubMed  Google Scholar 

  32. Miller EJ, Rhodes RK (1982). Preparation and characterization of the different types of collagen. Methods Enzymol. 82 Pt A, 33–64

  33. Christner P, Fein A, Goldberg S, Lipmann M, Abrams W, Weinbaum G (1985) Collagenase in the lower respiratory tract of patients with adult respiratory distress syndrome. Am Rev Respir Dis 131:690–695

    CAS  PubMed  Google Scholar 

  34. Woessner JF Jr (1979) Total, latent and active collagenase during the course of post-partum involution of the rat uterus. Effect Oestradiol Biochem J 180:95–102

    CAS  PubMed  Google Scholar 

  35. Anderson AJ (1969) Effects of lysosomal collagenolytic enzymes, anti-inflammatory drugs and other substances on some properties of insoluble collagen. Biochem J 113:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paz MA, Blumenfeld OO, Rojkind M, Henson E, Furfine C, Gallop PM (1965) Determination of carbonyl compounds with N-methyl benzathiozolone hydrazone. Arch Biochem Biophys 109:548–559

    Article  CAS  PubMed  Google Scholar 

  37. Adam M, Fietzek P, Kuhn K (1968) The reaction of metals with collagen in vivo II. The formation of cross-links in the collagen of lathyritic rats after gold treatment in vivo. Eur J Biochem 3:411–421

    Article  CAS  PubMed  Google Scholar 

  38. Pickrell JA, Mauderly JL (1981). Lung connective tissue: Location, metabolism and response to injury. In: Pickrell JA (ed). CRC Press, Boca Raton, Florida

  39. Witschi HP, Haschek WM, Meyer KR, Ulrich RL, Dalbey WE (1980) A pathogenetic mechanism in lung fibres. Chest 78(Suppl):395–399

    Article  CAS  PubMed  Google Scholar 

  40. Jackson DS, Bentley JP (1960) Significance of the extractable collagen. J Biophys Biochem Cytol 7:37–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsurufugi S, Ogata Y (1965) Biosynthesis of collagen in skin minces in relation to the mechanism of the formation of insoluble collagen. Biochim Biophys Acta 104:193–199

    Article  Google Scholar 

  42. Blaisdell RJ, Giri SN (1995) Mechanism of antifibrotic effect of taurine and niacin in the multidose bleomycin-hamster model of fibrosis: inhibition of lysyl oxidase and collagenase. J Biochem Toxicol 10:203–210

    Article  CAS  PubMed  Google Scholar 

  43. Bakowska J, Adamson IYR (1998) Collagenase and gelatinase activities in bronchoalveolar lavage fluids during bleomycin-induced lung injury. J Pathol 185:319–323

    Article  CAS  PubMed  Google Scholar 

  44. Gadek JE, Kelman JA, Fells G, Weinberger SE, Horwitz AL, Reynolds HY, Fulmer JD, Crystal RG (1979) Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis. N Engl J Med 301:737–742

    Article  CAS  PubMed  Google Scholar 

  45. Siegel RC (1976) Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase. J Biol Chem 251:5786–5792

    Article  CAS  PubMed  Google Scholar 

  46. Stimler NP, Tanzer ML (1976) Crosslinking. In: Ramachandran GN, Reddi AH (eds) Biochemistry of collagen. Plenum Press, New York, pp 137–162

    Google Scholar 

  47. Golub LM, Greenwald RA, Zebrowski EJ, Ramamurthy NS (1978) Effect of experimental diabetes on molecular characteristics of soluble rat tail tendon collagen. Biochim Biophys Acta 534:73–81

    Article  CAS  PubMed  Google Scholar 

  48. Vater CA, Harris ED, Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochern J 181:639–645

    Article  CAS  Google Scholar 

  49. Nirmala C, Puvanakrishnan R (1996) Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159:85–93

    Article  CAS  PubMed  Google Scholar 

  50. Satoskar RR, Shah SJ, Shenoy SG (1986) Evaluation of anti-inflammatory property of curcumin (diferuloylmethane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 24:651–654

    CAS  PubMed  Google Scholar 

  51. Srimal RC, Dhawan BN (1973) Pharmacology of diferuloylmethane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452

    Article  CAS  PubMed  Google Scholar 

  52. Srivastava V, Srimal KC (1985) Modification of certain inflammation induced biochemical changes by curcumin. Ind J Med Res 81:215–223

    CAS  Google Scholar 

  53. Joe B, Lokesh BR (2000) Dietary n-3 fatty acids, curcumin and capsaicin lower the release of lysosomal enzymes and eicosanoids in rat peritoneal macrophages. Mol Cell Biochem 203:153–161

    Article  CAS  PubMed  Google Scholar 

  54. Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122:2756–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang WA, Chen CM, Sheu CC, Liao SH, Hsu YL, Tsai MJ, Kuo PL (2020) The potential effects of curcumin on pulmonary fibroblasts of idiopathic pulmonary fibrosis (IPF)-approaching with next-generation sequencing and bioinformatics. Molecules 25:5458

    Article  CAS  PubMed Central  Google Scholar 

  56. Saidi A, Kasabova M, Vanderlynden L, Wartenberg M, Kara-Ali GH, Marc D, Lecaille F, Lalmanach G (2019) Curcumin inhibits the TGF-beta1-dependent differentiation of lung fibroblasts via PPARgamma-driven upregulation of cathepsins B and L.Sci

  57. Tyagi N, Singh DK, Dash D, Singh R (2019) Curcumin modulates paraquat-induced epithelial to mesenchymal transition by regulating transforming growth factor-beta (TGF-beta) in A549 Cells. Inflammation 42:1441–1455

    Article  CAS  PubMed  Google Scholar 

  58. Liu D, Gong L, Zhu H, Pu S, Wu Y, Zhang W, Huang G (2016) Curcumin Inhibits Transforming Growth Factor beta Induced Differentiation of Mouse Lung Fibroblasts to Myofibroblasts. Front Pharmacol 7:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang D, Huang C, Yang C, Liu RJ, Wang J, Niu J, Brömme D (2011) Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir Res 12:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khalil N, O’Connor RN, Unruh HW, Warren PW, Flanders KC, Kemp A, Bereznzy OH, Greenberg AH (1991) Increased production and immunochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 5:155–162

    Article  CAS  PubMed  Google Scholar 

  61. Santana A, Saxena B, Noble NA, Gold LI, Marshall BC (1995) Increased expression of transforming growth factor beta isoforms (β1, β2, β3) in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 13:34–44

    Article  CAS  PubMed  Google Scholar 

  62. Broekelmann TJ, Limper AH, Colby TV, McDonald JA (1991) Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 88:6642–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoyt DG, Lazo JS (1988) Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-beta precede bleomycin-induced pulmonary fibrosis in mice. J Pharmacol Exp Ther 24:765–771

    Google Scholar 

  64. Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 48:959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, Karin M, Roberts AB (1990) Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol Cell Biol 10:1492–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Feng XH, Deryneck R (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913

    Article  CAS  PubMed  Google Scholar 

  67. Pendurthi UR, Williams JT, Rao LV (1997) Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1, and NF-kappa B. Arterioscler Thromb Vasc Biol 17:3406–3413

    Article  CAS  PubMed  Google Scholar 

  68. Durairaj P, Venkatesan S, Narayanan V, Babu M (2020) Protective effects of curcumin on bleomycin-induced changes in lung glycoproteins. Mol Cell Biochem 2020(469):159–167

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. V. Arumugam for his help in statistical analysis and Mr V. Elango for his help in animal experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the current manuscript study: PD, VN, MB. Developed study protocols: PD, VN, MB. Data collection: PD, VN, MB. Analyzed and interpreted data: PD, VN, SV, MB. Prepared and edited the manuscript: PD, VN, SV, MB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Venkatesan Narayanan.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare for all authors that are relevant to the content of this article.

Ethical approval

All animals were treated with humane conditions and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaj, P., Venkatesan, S., Narayanan, V. et al. Curcumin inhibition of bleomycin-induced changes in lung collagen synthesis, deposition and assembly. Mol Biol Rep 48, 7775–7785 (2021). https://doi.org/10.1007/s11033-021-06790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06790-3

Keywords

Navigation