Skip to main content
Log in

Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nuclear receptors are the regulatory molecules that mediate cellular signals as they interact with specific DNA sequences. NR5A2 is a member of NR5A subfamily having four members (Nr5a1–Nr5a4). NR5A2 shows involvement in diverse biological processes like reverse cholesterol transport, embryonic stem cell pluripotency, steroidogenesis, development and differentiation of embryo, and adult homeostasis. NR5A2 haploinsufficiency has been seen associated with chronic pancreatitis, pancreatic and gastrointestinal cancer. There is a close relationship between the progression of pancreatic cancer from chronic pancreatitis, NR5A2 serving a common link. NR5A2 activity is regulated by intracellular phospholipids, transcriptional coregulators and post-translational modifications. The specific ligand of NR5A2 is unknown hence called an orphan receptor, but specific phospholipids such as dilauroyl phosphatidylcholine and diundecanoyl phosphatidylcholine act as a ligand and they are established drug targets in various diseases. This review will focus on the NR5A2 structure, regulation of its activity, and role in biological processes and diseases. In future, need more emphasis on discovering small molecule agonists and antagonist, which act as a drug target for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

NR:

Nuclear receptors

HREs:

Hormone response elements

MR:

Mineralocorticoid receptors

ER:

Estrogen receptors

PR:

Progesterone receptors

AR:

Androgen receptors

GR:

Glucocorticoid receptors

PXR:

Pregame X receptor

SXR:

Steroid xenobiotic receptor

CAR:

Constitutive androstane receptor

LXRs:

Liver X receptors

NR5A2:

Nuclear receptor subfamily 5 group A member 2

PPARγ :

Peroxisome proliferator-activated receptor gamma

FXR:

Farnesol X receptor

DLPC:

Dilauroyl phosphatidylcholine

DBD:

DNA binding domain

AF-1:

Activation function-1

LBD:

Ligand binding domain

AF-2:

Activation function-2

SF-1:

Steroidogenic factor 1

LRH-1:

Liver receptor homolog

DUPC:

Diundecanoyl phosphatidylcholine

SRC:

Steroid receptor coactivator

SHP:

Small heterodimer partner

Oct4:

Octamer-binding transcription factor 4

PGC-1α:

PPARγ co-activator 1α

MBF-1:

Multiprotein bridging factor

CREB:

CAMP response element-binding protein

C/EBPδ:

CCAAT/enhancer-binding protein δ

CBP:

Co-activators CREB binding protein

CYP7A1:

Cholesterol 7α-hydroxylase

Cyp 19:

Aromatase

DAX-1:

Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1

PROX1:

Prospero-related homeobox 1

NCOR1:

Nuclear receptor corepressor-1

SMRT:

Silencing mediator for retinol and thyroid receptor

CYP8B1:

12α-Hydroxylase

HDAC3:

Histone deacetylase 3 complex

GPS2:

G protein pathway suppressor 2

PMA:

Phorbol 12-myristate 13-acetate

PKA:

Protein kinase A

SIRT1:

SHP-sirtuin 1

PML:

Promyelocytic leukemia protein

T1DM:

Type 1 diabetes mellitus

AFP:

α1-Fetoprotein

HNF:

Hepatocyte nuclear factor

Sox2:

SRY-Box transcription factor 2

ERRβ:

Estrogen related receptor, beta

iPS:

Induced pluripotent stem cells

LH:

Luteinizing hormone

FSH:

Follicular stimulating hormone

StAR:

Steroidogenic acute regulatory protein

HSD3B2:

3β-Hydroxy steroid dehydrogenase type II

CYP 17:

Cytochrome P450 17 α-hydroxylase

ChREBP:

Carbohydrate response element binding protein

ChoREs:

Carbohydrate response elements

GCK:

Glucokinase

RCT:

Reverse cholesterol transport

HDLs:

High density lipoproteins

CETP:

Cholesterol-ester-transfer protein

SR-B1:

Scavenger receptor class B type I

BSEP:

Bile salt export pump

ASBT:

Apical sodium dependent bile acid transporter

Ost α/β:

Organic solute transporter alpha–beta

MRP-3:

Multidrug resistance protein-3

ER:

Endoplasmic reticulum

IL-1RA:

Interleukin-1 receptor antagonist

UPR:

Unfolded protein response

PlK-3:

Polio-like kinase 3

CYPIIA1:

Steroidogenic cholesterol side chain cleavage enzyme P450Scc

CYPIIB1:

11β-Hydroxylase

NF-KB:

Nuclear factor kappa-light chain-enhancer of activated B cells

AP1:

Activator protein-1

CP:

Chronic pancreatitis

PTF-1:

Pancreas transcription factor

GWAS:

Genome wide association studies

PDX-1:

Pancreatic and duodenal homeobox 1

SNPs:

Single nucleotide polymorphisms

PDAC:

Pancreatic ductal adenocarcinoma

PanIN:

Pancreatic intraepithelial neoplasia

References

  1. Burris TP, Busby SA, Griffin PR (2012) Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem Biol 19:51–59. https://doi.org/10.1016/j.chembiol.2011.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zimmer V, Liebe R, Lammert F (2015) Nuclear receptor variants in liver disease. Dig Dis 33:415–419. https://doi.org/10.1159/000371695

    Article  PubMed  Google Scholar 

  3. Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD (2012) Therapeutic potential of liver receptor homolog-1 modulators. J Steroid Biochem Mol Biol 130:138–146. https://doi.org/10.1016/j.jsbmb.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  4. Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14:250–260. https://doi.org/10.1016/j.tcb.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  5. Mouzat K, Baron S, Marceau G, Caira F, Sapin V, Volle DH, Lumbroso S, Lobaccaro JM (2013) Emerging roles for LXRs and LRH-1 in female reproduction. Mol Cell Endocrinol 368:47–58. https://doi.org/10.1016/j.mce.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  6. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870. https://doi.org/10.1126/science.294.5548.1866

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez-Marcos PJ, Auwerx J, Schoonjans K (2011) Emerging actions of the nuclear receptor LRH-1 in the gut. Biochim Biophys Acta 1812:947–955. https://doi.org/10.1016/j.bbadis.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  8. Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65:261–311. https://doi.org/10.1146/annurev.physiol.65.092101.142528

    Article  CAS  PubMed  Google Scholar 

  9. Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, Ortlund EA, Moore DD (2011) A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474:506–510. https://doi.org/10.1038/nature10111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Busby S, Nuhant P, Cameron M, Mercer BA, Hodder P, Roush WR, Griffin PR (2010) Discovery of inverse agonists for the liver receptor homologue-1 (LRH1; NR5A2). Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information

  11. Meinsohn MC, Smith OE, Bertolin K, Murphy BD (2019) The orphan nuclear receptors steroidogenic factor-1 and liver receptor homolog-1: structure, regulation, and essential roles in Mammalian reproduction. Physiol Rev 99:1249–1279. https://doi.org/10.1152/physrev.00019.2018

    Article  CAS  PubMed  Google Scholar 

  12. Kaluarachchi DC, Momany AM, Busch TD, Gimenez LG, Saleme C, Cosentino V, Christensen K, Dagle JM, Ryckman KK, Murray JC (2016) Polymorphisms in NR5A2, gene encoding liver receptor homolog-1 are associated with preterm birth. Pediatr Res 79:776–780. https://doi.org/10.1038/pr.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu Z, Hou X, Lv H, Sun B, Cui Y, Liu L, Rong F (2017) Expression of liver receptor homolog-1 (LRH-1) in villi and decidua of patients with unexplained recurrent spontaneous abortion. Med Sci Monit 23:2445–2452. https://doi.org/10.12659/msm.904645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fletterick R (2017) NR5A2 discovering compounds that block tumor growth in PDAC. J Surg Oncol 116:89–93. https://doi.org/10.1002/jso.24639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miranda DA, Krause WC, Cazenave-Gassiot A, Suzawa M, Escusa H, Foo JC, Shihadih DS, Stahl A, Fitch M, Nyangau E, Hellerstein M, Wenk MR, Silver DL, Ingraham HA (2018) LRH-1 regulates hepatic lipid homeostasis and maintains arachidonoyl phospholipid pools critical for phospholipid diversity. JCI Insight. https://doi.org/10.1172/jci.insight.96151

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, MacKay JA, Juzumiene D, Bynum JM, Madauss K, Montana V, Lebedeva L, Suzawa M, Williams JD, Williams SP, Guy RK, Thornton JW, Fletterick RJ, Willson TM, Ingraham HA (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–355. https://doi.org/10.1016/j.cell.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  17. Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA (2003) Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell 11:1575–1585. https://doi.org/10.1016/s1097-2765(03)00236-3

    Article  CAS  PubMed  Google Scholar 

  18. Nadolny C, Dong X (2015) Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther 16:997–1004. https://doi.org/10.1080/15384047.2015.1045693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein S, Schoonjans K (2015) Molecular basis for the regulation of the nuclear receptor LRH-1. Curr Opin Cell Biol 33:26–34. https://doi.org/10.1016/j.ceb.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  20. Xu P-L, Liu Y-Q, Shan S-F, Kong Y-Y, Zhou Q, Li M, Ding J-P, Xie Y-H, Wang Y (2004) Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol 18:1887–1905. https://doi.org/10.1210/me.2003-0334

    Article  CAS  PubMed  Google Scholar 

  21. Shin D-J, Osborne TF (2008) Peroxisome proliferator-activated receptor-γ coactivator-1α activation of CYP7A1 during food restriction and diabetes is still inhibited by small heterodimer partner. J Biol Chem 283:15089–15096. https://doi.org/10.1074/jbc.M710452200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Safi R, Kovacic A, Gaillard S, Murata Y, Simpson ER, McDonnell DP, Clyne CD (2005) Coactivation of liver receptor homologue-1 by peroxisome proliferator-activated receptor; coactivator-1A on aromatase promoter II and its inhibition by activated retinoid X receptor suggest a novel target for breast-specific antiestrogen therapy. Can Res 65(24):11762–11770. https://doi.org/10.1158/0008-5472.CAN-05-2792

    Article  CAS  Google Scholar 

  23. Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, Kuribayashi M, Orisaka M, Umezawa A, Miyamoto K (2010) PPAR-γ coactivator-1α regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Mol Endocrinol 24:485–496. https://doi.org/10.1210/me.2009-0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yumoto F, Nguyen P, Sablin EP, Baxter JD, Webb P, Fletterick RJ (2012) Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Proc Natl Acad Sci USA 109:143–148. https://doi.org/10.1073/pnas.1117036108

    Article  PubMed  Google Scholar 

  25. Botrugno OA, Fayard E, Annicotte J-S, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J (2004) Synergy between LRH-1 and β-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell 15:499–509. https://doi.org/10.1016/j.molcel.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Zhao H, Li Z, Cooney AJ, Lan ZJ (2007) Orphan nuclear receptor function in the ovary. Front Biosci 12:3398–3405. https://doi.org/10.2741/2321

    Article  CAS  PubMed  Google Scholar 

  27. Lee Y-K, Moore DD (2002) Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem 277:2463–2467. https://doi.org/10.1074/jbc.M105161200

    Article  CAS  PubMed  Google Scholar 

  28. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515. https://doi.org/10.1016/s1097-2765(00)00050-2

    Article  CAS  PubMed  Google Scholar 

  29. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526. https://doi.org/10.1016/s1097-2765(00)00051-4

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki T, Kasahara M, Yoshioka H, K-i M, Umesono K (2003) LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23:238–249. https://doi.org/10.1128/mcb.23.1.238-249.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamiya A, Kakinuma S, Onodera M, Miyajima A, Nakauchi H (2008) Prospero-related homeobox 1 and liver receptor homolog 1 coordinately regulate long-term proliferation of murine fetal hepatoblasts. Hepatology 48:252–264. https://doi.org/10.1002/hep.22303

    Article  CAS  PubMed  Google Scholar 

  32. Qin J, Gao D-m, Jiang Q-F, Zhou Q, Kong Y-Y, Wang Y, Xie Y-H (2004) Prospero-related homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and suppresses the transcription of the cholesterol 7-α-hydroxylase gene. Mol Endocrinol 18:2424–2439. https://doi.org/10.1210/me.2004-0009

    Article  CAS  PubMed  Google Scholar 

  33. Stein S, Oosterveer MH, Mataki C, Xu P, Lemos V, Havinga R, Dittner C, Ryu D, Menzies KJ, Wang X, Perino A, Houten SM, Melchior F, Schoonjans K (2014) SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab 20:603–613. https://doi.org/10.1016/j.cmet.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  34. Bouchard MF, Taniguchi H, Viger RS (2005) Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 146:4905–4916. https://doi.org/10.1210/en.2005-0187

    Article  CAS  PubMed  Google Scholar 

  35. Chanda D, Xie Y-B, Choi H-S (2010) Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to inhibit LRH-1 transactivation. Nucleic Acids Res 38:4607–4619. https://doi.org/10.1093/nar/gkq227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chalkiadaki A, Talianidis I (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25:5095–5105. https://doi.org/10.1128/MCB.25.12.5095-5105.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitby RJ, Stec J, Blind RD, Dixon S, Leesnitzer LM, Orband-Miller LA, Williams SP, Willson TM, Xu R, Zuercher WJ (2011) Small molecule agonists of the orphan nuclear receptors steroidogenic factor-1 (SF-1, NR5A1) and liver receptor homologue-1 (LRH-1, NR5A2). J Med Chem 54:2266–2281. https://doi.org/10.1021/jm1014296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, Klein OD, Moore DD, Ingraham HA (2018) LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun 9:4055. https://doi.org/10.1038/s41467-018-06137-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nissim S, Weeks O, Talbot JC, Hedgepeth JW, Wucherpfennig J, Schatzman-Bone S, Swinburne I, Cortes M, Alexa K, Megason S, North TE, Amacher SL, Goessling W (2016) Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development. Dev Biol 418:108–123. https://doi.org/10.1016/j.ydbio.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wagner M, Zollner G, Trauner M (2010) Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis 30:160–177. https://doi.org/10.1055/s-0030-1253225

    Article  CAS  PubMed  Google Scholar 

  41. D’Errico I, Moschetta A (2008) Nuclear receptors, intestinal architecture and colon cancer: an intriguing link. Cell Mol Life Sci 65:1523–1543. https://doi.org/10.1007/s00018-008-7552-1

    Article  CAS  PubMed  Google Scholar 

  42. Annicotte J-S, Fayard E, Swift GH, Selander L, Edlund H, Tanaka T, Kodama T, Schoonjans K, Auwerx J (2003) Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 23:6713–6724. https://doi.org/10.1128/mcb.23.19.6713-6724.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ (2010) Canonical Wnt/β-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 28:1794–1804. https://doi.org/10.1002/stem.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heng J-CD, Feng B, Han J, Jiang J, Kraus P, Ng J-H, Orlov YL, Huss M, Yang L, Lufkin T (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174. https://doi.org/10.1016/j.stem.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  45. Kelly VR, Hammer GD (2011) LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Mol Cell Endocrinol 332:116–124. https://doi.org/10.1016/j.mce.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Van Der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260. https://doi.org/10.1146/annurev.physiol.010908.163145

    Article  CAS  PubMed  Google Scholar 

  47. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359. https://doi.org/10.1038/nrg1840

    Article  CAS  PubMed  Google Scholar 

  48. Kostadinova F, Schwaderer J, Sebeo V, Brunner T (2014) Why does the gut synthesize glucocorticoids? Ann Med 46:490–497. https://doi.org/10.3109/07853890.2014.932920

    Article  CAS  PubMed  Google Scholar 

  49. Saxena D, Safi R, Little-Ihrig L, Zeleznik AJ (2004) Liver receptor homolog-1 stimulates the progesterone biosynthetic pathway during follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 145:3821–3829. https://doi.org/10.1210/en.2004-0423

    Article  CAS  PubMed  Google Scholar 

  50. Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876. https://doi.org/10.1101/gad.472008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oosterveer MH, Schoonjans K (2014) Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 71:1453–1467. https://doi.org/10.1007/s00018-013-1505-z

    Article  CAS  PubMed  Google Scholar 

  52. Oosterveer MH, Mataki C, Yamamoto H, Harach T, Moullan N, van Dijk TH, Ayuso E, Bosch F, Postic C, Groen AK, Auwerx J, Schoonjans K (2012) LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Investig 122:2817–2826. https://doi.org/10.1172/JCI62368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo Y, C-p L, Tall AR (2001) The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. J Biol Chem 276:24767–24773. https://doi.org/10.1074/jbc.M100912200

    Article  CAS  PubMed  Google Scholar 

  54. Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, Chapman J, Auwerx J (2002) Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep 3:1181–1187. https://doi.org/10.1093/embo-reports/kvf238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee YK, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, Goodwin B, Hammer RE, Mangelsdorf DJ, Kliewer SA (2008) Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 22:1345–1356. https://doi.org/10.1210/me.2007-0565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Out C, Hageman J, Bloks VW, Gerrits H, Sollewijn Gelpke MD, Bos T, Havinga R, Smit MJ, Kuipers F, Groen AK (2011) Liver receptor homolog-1 is critical for adequate up-regulation of Cyp7a1 gene transcription and bile salt synthesis during bile salt sequestration. Hepatology 53:2075–2085. https://doi.org/10.1002/hep.24286

    Article  CAS  PubMed  Google Scholar 

  57. Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN, Wu SP, Tsai MJ, Demayo FJ, Moore DD (2014) Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. Elife 3:e01694. https://doi.org/10.7554/eLife.01694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coste A, Dubuquoy L, Barnouin R, Annicotte J-S, Magnier B, Notti M, Corazza N, Antal MC, Metzger D, Desreumaux P (2007) LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci USA 104:13098–13103. https://doi.org/10.1073/pnas.0702440104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taves MD, Gomez-Sanchez CE, Soma KK (2011) Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 301:E11–E24. https://doi.org/10.1152/ajpendo.00100.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garg PK, Narayana D (2016) Changing phenotype and disease behaviour of chronic pancreatitis in India: evidence for gene-environment interactions. Glob Health Epidemiol Genomics 1:e17. https://doi.org/10.1017/gheg.2016.13

    Article  CAS  Google Scholar 

  61. Prakash VB (2019) Changing demography of pancreatitis patients in India–A hospital based study. Acta Sci Gastrointest Disord 2:08–11. https://doi.org/10.1017/gheg.2016.13

    Article  Google Scholar 

  62. Murtaugh LC, Keefe MD (2015) Regeneration and repair of the exocrine pancreas. Annu Rev Physiol 77:229–249. https://doi.org/10.1146/annurev-physiol-021014-071727

    Article  CAS  PubMed  Google Scholar 

  63. Cobo I, Martinelli P, Flandez M, Bakiri L, Zhang M, Carrillo-de-Santa-Pau E, Jia J, Sanchez-Arevalo Lobo VJ, Megias D, Felipe I, Del Pozo N, Millan I, Thommesen L, Bruland T, Olson SH, Smith J, Schoonjans K, Bamlet WR, Petersen GM, Malats N, Amundadottir LT, Wagner EF, Real FX (2018) Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature 554:533–537. https://doi.org/10.1038/nature25751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benod C, Vinogradova MV, Jouravel N, Kim GE, Fletterick RJ, Sablin EP (2011) Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci USA 108:16927–16931. https://doi.org/10.1073/pnas.1112047108

    Article  PubMed  PubMed Central  Google Scholar 

  65. Flandez M, Cendrowski J, Cañamero M, Salas A, Del Pozo N, Schoonjans K, Real FX (2014) Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRasG12V-driven pancreatic tumourigenesis. Gut 63:647–655. https://doi.org/10.1136/gutjnl-2012-304381

    Article  CAS  PubMed  Google Scholar 

  66. Amundadottir LT (2016) Pancreatic cancer genetics. Int J Biol Sci 12:314–325. https://doi.org/10.7150/ijbs.15001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun YM, Zheng S, Chen X, Gao F, Zhang J (2020) Lower Nr5a2 level downregulates the β-Catenin and TCF-4 expression in caerulein-induced pancreatic inflammation. Front Physiol 10:1549. https://doi.org/10.3389/fphys.2019.01549

    Article  PubMed  PubMed Central  Google Scholar 

  68. Macchini M, Chiaravalli M, Zanon S, Peretti U, Mazza E, Gianni L, Reni M (2019) Chemotherapy in elderly patients with pancreatic cancer: efficacy, feasibility and future perspectives. Cancer Treat Rev 72:1–6. https://doi.org/10.1016/j.ctrv.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  69. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, Arslan AA, Bueno-de-Mesquita HB, Gallinger S, Gross M, Helzlsouer K, Holly EA, Jacobs EJ, Klein AP, LaCroix A, Li D, Mandelson MT, Olson SH, Risch HA, Zheng W, Albanes D, Bamlet WR, Berg CD, Boutron-Ruault MC, Buring JE, Bracci PM, Canzian F, Clipp S, Cotterchio M, de Andrade M, Duell EJ, Gaziano JM, Giovannucci EL, Goggins M, Hallmans G, Hankinson SE, Hassan M, Howard B, Hunter DJ, Hutchinson A, Jenab M, Kaaks R, Kooperberg C, Krogh V, Kurtz RC, Lynch SM, McWilliams RR, Mendelsohn JB, Michaud DS, Parikh H, Patel AV, Peeters PH, Rajkovic A, Riboli E, Rodriguez L, Seminara D, Shu XO, Thomas G, Tjonneland A, Tobias GS, Trichopoulos D, Van Den Eeden SK, Virtamo J, Wactawski-Wende J, Wang Z, Wolpin BM, Yu H, Yu K, Zeleniuch-Jacquotte A, Fraumeni JF Jr, Hoover RN, Hartge P, Chanock SJ (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42:224–228. https://doi.org/10.1038/ng.522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Figura G, Morris JPT, Wright CV, Hebrok M (2014) Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 63:656–664. https://doi.org/10.1136/gutjnl-2012-304287

    Article  CAS  Google Scholar 

  71. Ramsey ML, Conwell DL, Hart PA (2017) Complications of chronic pancreatitis. Dig Dis Sci 62:1745–1750. https://doi.org/10.1007/s10620-017-4518-x

    Article  PubMed  PubMed Central  Google Scholar 

  72. Seimiya T, Otsuka M, Iwata T, Tanaka E, Suzuki T, Sekiba K, Yamagami M, Ishibashi R, Koike K (2018) Inflammation and de-differentiation in pancreatic carcinogenesis. World J Clin Cases 6:882–891. https://doi.org/10.12998/wjcc.v6.i15.882

    Article  PubMed  PubMed Central  Google Scholar 

  73. Midha S, Chawla S, Garg PK (2016) Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Cancer Lett 381:269–277. https://doi.org/10.1016/j.canlet.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  74. Yadav D, Lowenfels AB (2013) The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144:1252–1261. https://doi.org/10.1053/j.gastro.2013.01.068

    Article  PubMed  Google Scholar 

  75. Hammad AY, Ditillo M, Castanon L (2018) Pancreatitis. Surg Clin 98:895–913. https://doi.org/10.1016/j.suc.2018.06.001

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KM: gave ideas, formulation of subtopics, critical reviewed, comments, editing and final approval; NS written draft of the review article; SR: review this article.

Corresponding author

Correspondence to Kiran Meena.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, N., Rana, S. & Meena, K. Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases. Mol Biol Rep 48, 8155–8170 (2021). https://doi.org/10.1007/s11033-021-06784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06784-1

Keywords

Navigation