Skip to main content

Advertisement

Log in

Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryall JG, Cliff T, Dalton S, Sartorelli V (2015) Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  4. Stincone A, Prigione A, Cramer T et al (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev 90:927–963. https://doi.org/10.1111/brv.12140

    Article  PubMed  Google Scholar 

  5. Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell. https://doi.org/10.1007/s13238-014-0082-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. van den Bossche J, Saraber DL (2018) Metabolic regulation of macrophages in tissues. Cell Immunol 330:54–59. https://doi.org/10.1016/j.cellimm.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Lee H-Y, Hong I-S (2020) Metabolic regulation and related molecular mechanisms in various stem cell functions. Curr Stem Cell Res Ther 15:531–546. https://doi.org/10.2174/1574888x15666200512105347

    Article  CAS  PubMed  Google Scholar 

  8. Contemporary Metabolism: Volume 2 - Norbert Freinkel - Google Books

  9. Lunt SY, vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237

    Article  CAS  PubMed  Google Scholar 

  10. Miller MA, Zachary JF (2017) Mechanisms and morphology of cellular injury, adaptation, and death. In: Pathologic Basis of Veterinary Disease Expert Consult. Elsevier Inc., pp. 2–43.e19

  11. Chandel NS (2021) Signaling and metabolism. Cold Spring Harb Perspect Biol 13:1–20. https://doi.org/10.1101/cshperspect.a040600

    Article  CAS  Google Scholar 

  12. Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006783

    Article  PubMed  PubMed Central  Google Scholar 

  13. Metallo CM, vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. https://doi.org/10.1016/j.immuni.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colamatteo A, Micillo T, Bruzzaniti S et al (2019) Metabolism and autoimmune responses: the microRNA connection. Front Immunol 10:1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chawla A (2010) Control of macrophage activation and function by PPARs. Circ Res 106:1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Neill L, Nature DH (2013) Undefined Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355

    Article  PubMed  Google Scholar 

  18. Cantó C, Gerhart-Hines Z, Feige J et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  PubMed  PubMed Central  Google Scholar 

  19. Soñanez-Organis J, Biochimie MRA (2012) Undefined alternative splicing generates two lactate dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp Litopenaeus vannamei. Elsevier

  20. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 281:9030–9037. https://doi.org/10.1074/jbc.M511397200

    Article  CAS  PubMed  Google Scholar 

  21. van den Bossche J, Baardman J, Otto NA et al (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17:684–696. https://doi.org/10.1016/j.celrep.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  22. Anastasiou D, Yu Y, Israelsen WJ et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847. https://doi.org/10.1038/nchembio.1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corcoran SE, O’Neill LAJ (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Investig 126:3699–3707

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu J, Niu P, Zhao Y et al (2019) Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0212063

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Xu R, Gu H et al (2021) Metabolic reprogramming in macrophage responses. Biomark Res 9:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taniguchi K, Sugito N, Shinohara H et al (2018) Organ-specificmicrornas (MIR122, 137, and 206) contribute to tissue characteristics and carcinogenesis by regulating pyruvate kinasem1/2 (PKM) expression. Int J Mol Sci 19:1276. https://doi.org/10.3390/ijms19051276

    Article  CAS  PubMed Central  Google Scholar 

  27. Quinn SR, O’Neill LA (2014) The role of microRNAs in the control and mechanism of action of IL-10. Curr Top Microbiol Immunol 380:145–155. https://doi.org/10.1007/978-3-662-43492-5_7

    Article  CAS  PubMed  Google Scholar 

  28. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V (2018) Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol 9:1

    Article  Google Scholar 

  29. Berry CT, Liu X, Myles A et al (2020) BCR-induced Ca2+ signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep 31:107474. https://doi.org/10.1016/j.celrep.2020.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scharenberg AM, Humphries LA, Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7:778–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Linke M, Fritsch SD, Sukhbaatar N et al (2017) mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett 591:3089–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Oravecz-Wilson K, Bridges S et al (2019) MiR-142 controls metabolic reprogramming that regulates dendritic cell activation. J Clin Investig 129:2029–2042. https://doi.org/10.1172/JCI123839

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:1–13

    Article  Google Scholar 

  34. Melikian HE (2004) Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation. Pharmacol Ther 104:17–27

    Article  CAS  PubMed  Google Scholar 

  35. Herrero-Mendez A, Almeida A, Fernández E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752. https://doi.org/10.1038/ncb1881

    Article  CAS  PubMed  Google Scholar 

  36. Gershon TR, Crowther AJ, Tikunov A et al (2013) Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab 1:1–17. https://doi.org/10.1186/2049-3002-1-2

    Article  Google Scholar 

  37. Agostini M, Romeo F, Inoue S et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23:1502–1514. https://doi.org/10.1038/cdd.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tao X, Finkbeiner S, Arnold DB et al (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726. https://doi.org/10.1016/S0896-6273(00)81010-7

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:1–14. https://doi.org/10.1186/gb-2006-7-9-r85

    Article  CAS  Google Scholar 

  40. Fiore R, Khudayberdiev S, Saba R, Schratt G (2011) MicroRNA function in the nervous system. In: Progress in Molecular Biology and Translational Science. Elsevier B.V., pp. 47–100

  41. Selvakumar GP, Iyer SS, Kempuraj D et al (2018) Glia maturation factor dependent inhibition of mitochondrial PGC-1α triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol Neurobiol 55:7132–7152. https://doi.org/10.1007/s12035-018-0882-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martorana F, Gaglio D, Bianco MR et al (2018) Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis 9:1–16. https://doi.org/10.1038/s41419-018-0429-9

    Article  CAS  Google Scholar 

  43. Qian Y, Song J, Ouyang Y et al (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sreedhar A, Petruska P, Miriyala S et al (2017) UCP2 overexpression enhanced glycolysis via activation of PFKFB2 during skin cell transformation. Oncotarget 8:95504–95515. https://doi.org/10.18632/oncotarget.20762

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang J, Khvorostov I, Hong JS et al (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873. https://doi.org/10.1038/emboj.2011.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vozza A, Parisi G, de Leonardis F et al (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111:960–965. https://doi.org/10.1073/pnas.1317400111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Renault VM, Rafalski VA, Morgan AA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539. https://doi.org/10.1016/j.stem.2009.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aschrafi A, Schwechter AD, Mameza MG et al (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28:12581–12590. https://doi.org/10.1523/JNEUROSCI.3338-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Hu C, Li J et al (2016) Effect of miR-26a-5p on the Wnt/Ca2+ pathway and osteogenic differentiation of mouse adipose-derived mesenchymal stem cells. Calcif Tissue Int 99:174–186. https://doi.org/10.1007/s00223-016-0137-3

    Article  CAS  PubMed  Google Scholar 

  50. Kinoshita C, Aoyama K, Nakaki T (2015) microRNA as a new agent for regulating neuronal glutathione synthesis and metabolism. AIMS Mol Sci 2:124–143. https://doi.org/10.3934/molsci.2015.2.124

    Article  CAS  Google Scholar 

  51. Ryall JG (2013) Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration. FEBS J 280:4004–4013

    Article  CAS  PubMed  Google Scholar 

  52. Günther S, Kim J, Kostin S et al (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601. https://doi.org/10.1016/j.stem.2013.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ly CH (2018) The metabolic microenvironment regulates myogenic fate decisions through altered histone acetylation

  54. Bhattacharya D, Scimè A (2020) Mitochondrial function in muscle stem cell fates. Front Cell Develop Biol 8:480

    Article  Google Scholar 

  55. Chemello F, Grespi F, Zulian A et al (2019) Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle. Cell Rep 26:3784-3797.e8. https://doi.org/10.1016/j.celrep.2019.02.105

    Article  CAS  PubMed  Google Scholar 

  56. Sharma M, Juvvuna PK, Kukreti H, McFarlane C (2014) Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front Physiol. https://doi.org/10.3389/fphys.2014.00239

    Article  PubMed  PubMed Central  Google Scholar 

  57. Anderson RM, Weindruch R (2010) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21:134–141

    Article  CAS  PubMed  Google Scholar 

  58. Fochi S, Giuriato G, de Simone T et al (2020) Regulation of micrornas in satellite cell renewal, muscle function, sarcopenia and the role of exercise. Int J Mol Sci 21:1–24

    Article  Google Scholar 

  59. Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L et al (2021) MiRNAs and muscle regeneration: therapeutic targets in Duchenne muscular dystrophy. Int J Mol Sci 22:4236. https://doi.org/10.3390/IJMS22084236

    Article  PubMed  PubMed Central  Google Scholar 

  60. Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410:1–13

    Article  CAS  PubMed  Google Scholar 

  61. Lhonore A, Rana V, Arsic N et al (2007) Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis. Mol Biol Cell 18:1992–2001. https://doi.org/10.1091/mbc.E06-09-0867

    Article  CAS  Google Scholar 

  62. Kjøbsted R, Hingst JR, Fentz J et al (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741–1777

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang W, Lu Z (2013) Nuclear PKM2 regulates the Warburg effect. Cell Cycle 12:3343–3347

    Article  Google Scholar 

  64. Marceca GP, Nigita G, Calore F, Croce CM (2020) MicroRNAs in skeletal muscle and hints on their potential role in muscle wasting during cancer cachexia. Front Oncol 10:2604

    Google Scholar 

  65. Yeo JC, Ng HH (2013) The transcriptional regulation of pluripotency. Cell Res 23:20–32

    Article  CAS  PubMed  Google Scholar 

  66. Cliff TS, Wu T, Boward BR et al (2017) MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell 21:502-516.e9. https://doi.org/10.1016/j.stem.2017.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu V, Dahan P, Ahsan FM et al (2019) Mitochondrial metabolism and glutamine are essential for mesoderm differentiation of human pluripotent stem cells. Cell Res 29:596–598

    Article  PubMed  PubMed Central  Google Scholar 

  68. Freund C, Ward-van Oostwaard D, Monshouwer-Kloots J et al (2008) Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells 26:724–733. https://doi.org/10.1634/stemcells.2007-0617

    Article  CAS  PubMed  Google Scholar 

  69. Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8:162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  70. Lee J, Kim MS (2007) The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2007.01.033

    Article  PubMed  Google Scholar 

  71. Estarás C, Hsu HT, Huang L, Jones KA (2017) YAP repression of the WNT3 gene controls hESC differentiation along the cardiac mesoderm lineage. Genes Dev 31:2250–2263. https://doi.org/10.1101/gad.307512.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cox AG, Tsomides A, Yimlamai D et al (2018) Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J. https://doi.org/10.15252/embj.2018100294

    Article  PubMed  PubMed Central  Google Scholar 

  73. Estarás C, Benner C, Jones KA (2014) SMADs and YAP compete to control elongation of β-catenin: LEF-1-recruited RNAPII during hESC differentiation. Mol Cell 58:780–793. https://doi.org/10.1016/j.molcel.2015.04.001

    Article  CAS  Google Scholar 

  74. Neary MT, Ng KE, Ludtmann MHR et al (2014) Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol 74:340–352. https://doi.org/10.1016/j.yjmcc.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Denning C, Borgdorff V, Crutchley J et al (2016) Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochimica et Biophysica Acta - Mol Cell Res 1863:1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014

    Article  CAS  Google Scholar 

  76. Chanthra N, Abe T, Miyamoto M et al (2020) A novel fluorescent reporter system identifies laminin-511/521 as potent regulators of cardiomyocyte maturation. Sci Rep. https://doi.org/10.1038/s41598-020-61163-3

    Article  PubMed  PubMed Central  Google Scholar 

  77. Barreto S, Hamel L, Schiatti T et al (2019) Cardiac progenitor cells from stem cells: learning from genetics and biomaterials. Cells 8(12):1536

    Article  CAS  PubMed Central  Google Scholar 

  78. André E, de Pauw A, Verdoy R et al (2019) Changes of metabolic phenotype of cardiac progenitor cells during differentiation: neutral effect of stimulation of AMP-activated protein kinase. Stem Cells and Develop 28:1498–1513. https://doi.org/10.1089/scd.2019.0129

    Article  CAS  Google Scholar 

  79. Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:1–10

    Article  Google Scholar 

  80. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/BSE0470069

    Article  CAS  PubMed  Google Scholar 

  81. Nadworny AS, Guruju MR, Poor D et al (2013) Nox2 and Nox4 influence neonatal c-kit+ cardiac precursor cell status and differentiation. Am J Physiol - Heart Circul Physiol 305:H829. https://doi.org/10.1152/ajpheart.00761.2012

    Article  CAS  Google Scholar 

  82. Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA (2018) Changing metabolism in differentiating cardiac progenitor cells—can stem cells become metabolically flexible cardiomyocytes? Front Cardiovasc Med 5:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harvey A, Caretti G, Moresi V et al (2019) Interplay between metabolites and the epigenome in regulating embryonic and adult stem cell potency and maintenance. Stem Cell Rep 13:573–589

    Article  CAS  Google Scholar 

  84. Engleka KA, Manderfield LJ, Brust RD et al (2012) Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 110:922–926. https://doi.org/10.1161/CIRCRESAHA.112.266510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang J, Greene SB, Bonilla-Claudio M et al (2010) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a microRNA-mediated mechanism. Dev Cell 19:903–912. https://doi.org/10.1016/j.devcel.2010.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vincentz JW, Barnes RM, Firulli BA et al (2008) Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev Dyn 237:3809–3819. https://doi.org/10.1002/dvdy.21803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kalozoumi G, Yacoub M, Sanoudou D (2014) MicroRNAs in heart failure: small molecules with major impact. Glob Cardiol Sci Pract 2014:30. https://doi.org/10.5339/gcsp.2014.30

    Article  Google Scholar 

  88. Fang LL, Wang XH, Sun BF et al (2017) Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells (Review). Int J Mol Med 40:1624–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Du W, Pan Z, Chen X et al (2014) By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell Physiol Biochem 34:955–965. https://doi.org/10.1159/000366312

    Article  CAS  PubMed  Google Scholar 

  90. Fuller A, Qian L (2014) MiRiad roles for microRNAs in cardiac development and regeneration. Cells 3:724–750. https://doi.org/10.3390/cells3030724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Malizia AP, Wang DZ (2011) MicroRNAs in cardiomyocyte development. Wiley Interdiscip Rev: Syst Biol Med 3:183–190

    CAS  Google Scholar 

  92. Ngar-Yun Poon E, Hao B, Guan D et al (2018) Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res. https://doi.org/10.1093/cvr/cvy019

    Article  PubMed  Google Scholar 

  93. Serocki M, Bartoszewska S, Janaszak-Jasiecka A et al (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21:183–202. https://doi.org/10.1007/s10456-018-9600-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Climent M, Viggiani G, Chen YW et al (2020) Microrna and ros crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 21:1–34. https://doi.org/10.3390/ijms21124370

    Article  CAS  Google Scholar 

  95. He J, Jiang BH (2016) Interplay between reactive oxygen species and microRNAs in cancer. Curr Pharmacol Rep 2:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS conceived the idea and wrote the manuscript.

Corresponding author

Correspondence to Varsha Singh.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Consent to participate

This article does not contain any studies with human participants or animals performed by the author.

Consent to publish

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 48, 8123–8140 (2021). https://doi.org/10.1007/s11033-021-06769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06769-0

Keywords

Navigation