Skip to main content

Advertisement

Log in

Nfib promotes chondrocyte proliferation and inhibits differentiation by mildly regulating Sox9 and its downstream genes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chondrocyte proliferation and differentiation play pivotal roles in regulating cartilage formation, endochondral bone formation, and repair. Cartilage damage and underdevelopment may cause severe joint diseases. Various transcription factors regulate cartilage development. Nuclear factor 1 B (Nfib) is a transcription factor that plays a regulatory role in various organs. However, the effect and mechanism of Nfib on the proliferation and differentiation of chondrocytes in cartilage are still largely unknown.

Methods and results

In the present study, we investigated the gene expression patterns in primary chondrocytes with Nfib overexpression or silencing by RNA sequencing (RNA-seq) technology. The results showed that Nfib overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. However, with Nfib silencing, the genes involved in promoting chondrocyte differentiation were significantly up-regulated, whereas those involved in promoting chondrocyte proliferation were significantly down-regulated. Furthermore, quantitative real-time PCR (qRT-PCR), western blot, alcian blue staining and immunofluorescence staining assays further confirmed that Nfib potentially promotes chondrocyte proliferation and extracellular synthesis but inhibits differentiation.

Conclusions

The molecular mechanism of Nfib in promoting chondrocyte proliferation and inhibiting differentiation was probably achieved by stimulating Sox9 and its downstream genes. Thus, this study adds new insights regarding the underlying molecular mechanism of transcriptional regulation in cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The RNA-seq data set are available in the NCBI Sequence Read Archive (SRA) database (Accession Number: PRJNA707136).

References

  1. Oh CD, Lu Y, Liang S, Mori-Akiyama Y, Chen D, de Crombrugghe B, Yasuda H (2014) SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS ONE 9:e107577. https://doi.org/10.1371/journal.pone.0107577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828. https://doi.org/10.1101/gad.1017802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wuelling M, Vortkamp A (2011) Chondrocyte proliferation and differentiation. Endocr Dev 21:1–11. https://doi.org/10.1159/000328081

    Article  CAS  PubMed  Google Scholar 

  4. Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170. https://doi.org/10.1016/s0925-4773(98)00210-x

    Article  CAS  PubMed  Google Scholar 

  5. Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290. https://doi.org/10.1002/(SICI)1097-0177(199904)214:4%3c279::AID-AJA1%3e3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  6. Cheng A, Genever PG (2010) SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Miner Res 25:2680–2689. https://doi.org/10.1002/jbmr.174

    Article  CAS  PubMed  Google Scholar 

  7. Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323. https://doi.org/10.1007/s00418-018-1640-6

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Ghori-Javed FY, Rashid H, Adhami MD, Serra R, Gutierrez SE, Javed A (2014) Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res 29:2653–2665. https://doi.org/10.1002/jbmr.2287

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Z, Yao B, Zhao D (2020) Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 47:5773–5792. https://doi.org/10.1007/s11033-020-05646-6

    Article  CAS  PubMed  Google Scholar 

  10. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89. https://doi.org/10.1038/8792

    Article  CAS  PubMed  Google Scholar 

  11. Ikegami D, Akiyama H, Suzuki A, Nakamura T, Nakano T, Yoshikawa H, Tsumaki N (2011) Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development 138:1507–1519. https://doi.org/10.1242/dev.057802

    Article  CAS  PubMed  Google Scholar 

  12. Uchihashi T, Kimata M, Tachikawa K, Koshimizu T, Okada T, Ihara-Watanabe M, Sakai N, Kogo M, Ozono K, Michigami T (2007) Involvement of nuclear factor I transcription/replication factor in the early stage of chondrocytic differentiation. Bone 41:1025–1035. https://doi.org/10.1016/j.bone.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  13. Hsu YC, Osinski J, Campbell CE, Litwack ED, Wang D, Liu S, Bachurski CJ, Gronostajski RM (2011) Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 354:242–252. https://doi.org/10.1016/j.ydbio.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Becker-Santos DD, Lonergan KM, Gronostajski RM, Lam WL (2017) Nuclear factor I/B: a master regulator of cell differentiation with paradoxical roles in cancer. EBioMedicine 22:2–9. https://doi.org/10.1016/j.ebiom.2017.05.027

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gründer A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, Schrewe H (2002) Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 112:69–77. https://doi.org/10.1016/s0925-4773(01)00640-2

    Article  PubMed  Google Scholar 

  16. Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED, Richards LJ, Gronostajski RM (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25:685–698. https://doi.org/10.1128/MCB.25.2.685-698.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T, Jessberger S, Taylor V (2016) Multipotency of adult hippocampal NSCs in vivo is restricted by drosha/NFIB. Cell Stem Cell 19:653–662. https://doi.org/10.1016/j.stem.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  18. Mellas RE, Kim H, Osinski J, Sadibasic S, Gronostajski RM, Cho M, Baker OJ (2015) NFIB regulates embryonic development of submandibular glands. J Dent Res 94:312–319. https://doi.org/10.1177/0022034514559129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang CY, Pasolli HA, Giannopoulou EG, Guasch G, Gronostajski RM, Elemento O, Fuchs E (2013) NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 495:98–102. https://doi.org/10.1038/nature11847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe S, Farrow S, Poudel P, Burden F, Jansen SBG, Astle WJ, Attwood A, Bariana T, de Bono B, Breschi A, Chambers JC, Consortium B, Choudry FA, Clarke L, Coupland P, van der Ent M, Erber WN, Jansen JH, Favier R, Fenech ME, Foad N, Freson K, van Geet C, Gomez K, Guigo R, Hampshire D, Kelly AM, Kerstens HHD, Kooner JS, Laffan M, Lentaigne C, Labalette C, Martin T, Meacham S, Mumford A, Nürnberg S, Palumbo E, van der Reijden BA, Richardson D, Sammut SJ, Slodkowicz G, Tamuri AU, Vasquez L, Voss K, Watt S, Westbury S, Flicek P, Loos R, Goldman N, Bertone P, Read RJ, Richardson S, Cvejic A, Soranzo N, Ouwehand WH, Stunnenberg HG, Frontini M, Rendon A (2014) Transcriptional diversity during lineage commitment of human blood progenitors. Science 345:1251033. https://doi.org/10.1126/science.1251033

  21. Waki H, Nakamura M, Yamauchi T, Wakabayashi K, Yu J, Hirose-Yotsuya L, Take K, Sun W, Iwabu M, Okada-Iwabu M, Fujita T, Aoyama T, Tsutsumi S, Ueki K, Kodama T, Sakai J, Aburatani H, Kadowaki T (2011) Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet 7:e1002311. https://doi.org/10.1371/journal.pgen.1002311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. https://doi.org/10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612

    Article  CAS  PubMed  Google Scholar 

  25. Zhao RL, Zhang XM, Jia LN, Song W, Sun YL, Meng XY, Peng XX (2019) pNNS-Conjugated chitosan mediated IGF-1 and miR-140 overexpression in articular chondrocytes improves cartilage repair. Biomed Res Int 2019:2761241. https://doi.org/10.1155/2019/2761241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Surmann-Schmitt C, Dietz U, Kireva T, Adam N, Park J, Tagariello A, Onnerfjord P, Heinegård D, Schlötzer-Schrehardt U, Deutzmann R, von der Mark K, Stock M (2008) Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem 283:7082–7093. https://doi.org/10.1074/jbc.M702792200

    Article  CAS  PubMed  Google Scholar 

  27. Seuffert F, Weidner D, Baum W, Schett G, Stock M (2018) Upper zone of growth plate and cartilage matrix associated protein protects cartilage during inflammatory arthritis. Arthritis Res Ther 20:88–100. https://doi.org/10.1186/s13075-018-1583-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulet B, Liu K, Plumb D, Vo P, Shah M, Staines K, Sampson A, Nakamura H, Nagase H, Carriero A, Shefelbine S, Pitsillides AA, Bou-Gharios G (2016) Overexpression of TIMP-3 in chondrocytes produces transient reduction in growth plate length but permanently reduces adult bone quality and quantity. PLoS ONE 11:e0167971. https://doi.org/10.1371/journal.pone.0167971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prideaux M, Staines KA, Jones ER, Riley GP, Pitsillides AA, Farquharson C (2015) MMP and TIMP temporal gene expression during osteocytogenesis. Gene Expr Patterns 18:29–36. https://doi.org/10.1016/j.gep.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  30. Deckx S, Heymans S, Papageorgiou AP (2016) The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease? FASEB J 30:2651–2661. https://doi.org/10.1096/fj.201500096R

    Article  CAS  PubMed  Google Scholar 

  31. Wang A, Hu N, Zhang Y, Chen Y, Su C, Lv Y, Shen Y (2019) MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genomics 12:201–211. https://doi.org/10.1186/s12920-019-0649-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muttigi MS, Han I, Park HK, Park H, Lee SH (2016) Matrilin-3 role in cartilage development and osteoarthritis. Int J Mol Sci 17:590–599. https://doi.org/10.3390/ijms17040590

    Article  CAS  PubMed Central  Google Scholar 

  33. Huang Y, Wan G, Tao J (2017) C1q/TNF-related protein-3 exerts the chondroprotective effects in IL-1β-treated SW1353 cells by regulating the FGFR1 signaling. Biomed Pharmacother 85:41–46. https://doi.org/10.1016/j.biopha.2016.11.128

    Article  CAS  PubMed  Google Scholar 

  34. Tashima T, Nagatoishi S, Sagara H, Ohnuma S, Tsumoto K (2015) Osteomodulin regulates diameter and alters shape of collagen fibrils. Biochem Biophys Res Commun 463:292–296. https://doi.org/10.1016/j.bbrc.2015.05.053

    Article  CAS  PubMed  Google Scholar 

  35. Thaler R, Sturmlechner I, Spitzer S, Riester SM, Rumpler M, Zwerina J, Klaushofer K, van Wijnen AJ, Varga F (2015) Acute-phase protein serum amyloid A3 is a novel paracrine coupling factor that controls bone homeostasis. FASEB J 29:1344–1359. https://doi.org/10.1096/fj.14-265512

    Article  CAS  PubMed  Google Scholar 

  36. Rose BJ, Kooyman DL (2016) A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis Markers 2016:4895050. https://doi.org/10.1155/2016/4895050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao W, Li Z, Zhang H, Li J, Wang K, Yang Y (2015) Proteomic analysis of synovial fluid as an analytical tool to detect candidate biomarkers for knee osteoarthritis. Int J Clin Exp Pathol 8:9975–9989

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Willcockson H, Ozkan H, Chubinskaya S, Loeser RF, Longobardi L (2021) CCL2 induces articular chondrocyte MMP expression through ERK and p38 signaling pathways. Osteoarthr Cartil Open 3:100136. https://doi.org/10.1016/j.ocarto.2020.100136

    Article  Google Scholar 

  39. Ohlsson S, Tufvesson B, Polling A, Ohlsson K (1997) Distribution of the secretory leucocyte proteinase inhibitor in human articular cartilage. Biol Chem 378:1055–1058. https://doi.org/10.1515/bchm.1997.378.9.1055

    Article  CAS  PubMed  Google Scholar 

  40. Kim HE, Shin Y, Jung IJ, Yang JI, Chun CH, Kim HA, Chun JS (2021) Overexpression of secretory leukocyte peptidase inhibitor (SLPI) does not modulate experimental osteoarthritis but may be a biomarker for the disease. Osteoarthritis Cartilage 29:558–567. https://doi.org/10.1016/j.joca.2021.01.003

    Article  PubMed  Google Scholar 

  41. Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S, Nagase H (2016) MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol 56:57–73. https://doi.org/10.1016/j.matbio.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ushijima T, Okazaki K, Tsushima H, Ishihara K, Doi T, Iwamoto Y (2014) CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation. PLoS ONE 9:e104547. https://doi.org/10.1371/journal.pone.0104547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim DH, Lee DH, Jo MR, Son DJ, Park MH, Hwang CJ, Park JH, Yuk DY, Yoon DY, Jung YS, Kim Y, Jeong JH, Han SB, Hong JT (2015) Exacerbation of collagen antibody-induced arthritis in transgenic mice overexpressing peroxiredoxin 6. Arthritis Rheumatol 67:3058–3069. https://doi.org/10.1002/art.39284

    Article  CAS  PubMed  Google Scholar 

  44. Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Vuolteenaho K, Moilanen E (2020) Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res Ther 22:271–284. https://doi.org/10.1186/s13075-020-02289-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahmad R, Qureshi HY, El Mabrouk M, Sylvester J, Ahmad M, Zafarullah M (2007) Inhibition of interleukin 1-induced matrix metalloproteinase 13 expression in human chondrocytes by interferon gamma. Ann Rheum Dis 66:782–789. https://doi.org/10.1136/ard.2006.060269

    Article  CAS  PubMed  Google Scholar 

  46. Yamashita M, Inoue K, Saeki N, Ideta-Otsuka M, Yanagihara Y, Sawada Y, Sakakibara I, Lee J, Ichikawa K, Kamei Y, Iimura T, Igarashi K, Takada Y, Imai Y (2018) Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression. Development 145:dev157412. https://doi.org/10.1242/dev.157412

    Article  CAS  PubMed  Google Scholar 

  47. Durand AL, Dufour A, Aubert-Foucher E, Oger-Desfeux C, Pasdeloup M, Lustig S, Servien E, Vaz G, Perrier-Groult E, Mallein-Gerin F, Lafont JE (2020) The lysine specific demethylase-1 negatively regulates the COL9A1 gene in human articular chondrocytes. Int J Mol Sci 21:6322–6337. https://doi.org/10.3390/ijms21176322

    Article  CAS  PubMed Central  Google Scholar 

  48. Klinger P, Surmann-Schmitt C, Brem M, Swoboda B, Distler JH, Carl HD, von der Mark K, Hennig FF, Gelse K (2011) Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue. Arthritis Rheum 63:2721–2731. https://doi.org/10.1002/art.30335

    Article  CAS  PubMed  Google Scholar 

  49. Kimura T, Okada A, Yatabe T, Okubo M, Toyama Y, Noda M, Okada Y (2010) RECK is up-regulated and involved in chondrocyte cloning in human osteoarthritic cartilage. Am J Pathol 176:2858–2867. https://doi.org/10.2353/ajpath.2010.091003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant number 2018YFC1706605) and the National Natural Science Foundation of China (grant number 81702136).

Funding

This work was supported by the National Key Research and Development Program of China (Grant Number 2018YFC1706605), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant Number ZYYCXTD-D-202001ZYYCXTD-D-202001) and the National Natural Science Foundation of China (Grant Number 81702136).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DP and BQ. The first draft of the manuscript was written by DP. The review and editing of the manuscript was written by BY. The resources and supervision were performed by DZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daqing Zhao or Baojin Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed in accordance with the guidelines of the Institutional Animal Ethics Committee of Changchun University of Chinese Medicine (No. ccucm-2017–0015).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1836 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Qian, B., Zhao, D. et al. Nfib promotes chondrocyte proliferation and inhibits differentiation by mildly regulating Sox9 and its downstream genes. Mol Biol Rep 48, 7487–7497 (2021). https://doi.org/10.1007/s11033-021-06767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06767-2

Keywords

Navigation