Skip to main content

Advertisement

Log in

Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The tumor suppressor protein p53 is a most promising target for the development of anticancer drugs. Allicin (diallylthiosulfinate) is one of the most active components of garlic (Alliium sativum L.) and possesses a variety of health-promoting properties with pharmacological applications. However, whether allicin plays an anti-cancer role against breast cancer cells through the induction of p53-mediated apoptosis remains unknown.

Methods and results

In this study, we investigate the anti-breast cancer effect of allicin in vitro by using MCF-7 and MD-MBA-231 cells. We found that allicin reduces cell viability, induces apoptosis and cell cycle arrest in both cells. Allicin activated p53 and caspase 3 expressions in both cells but produced different effects on the expression of p53-related biomarkers. In MDA-MB-231 cells, allicin up-regulated the mRNA and protein expression of A1BG and THBS1 while down-regulated the expression of TPM4. Conversely, the mRNA and protein expression of A1BG, THBS1 and TPM4 were all reduced in MCF-7 cells. Hence, allicin induces cell cycle arrest and apoptosis in breast cancer cells through p53 activation but it effects on the expression of p53-related biomarkers were dependent upon the specific type of breast cancer involved.

Conclusions

These findings suggest that allicin induces apoptosis and regulates biomarker expression in breast cancer cell lines through modulating the p53 signaling pathway. Furthermore, our results promote the utility of allicin as compound for further studies as an anticancer drug targeting p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA: Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  2. Del Pup L, Codacci-Pisanelli G, Peccatori F (2019) Breast cancer risk of hormonal contraception: counselling considering new evidence. Crit Rev Oncol Hematol 137:123–130. https://doi.org/10.1016/j.critrevonc.2019.03.001

    Article  PubMed  Google Scholar 

  3. Aybar DO, Kilic SP, Cinkir HY (2020) The effect of breathing exercise on nausea, vomiting and functional status in breast cancer patients undergoing chemotherapy. Complement Ther Clin 40:101213

    Article  Google Scholar 

  4. Sighoko D, Kamate B, Traore C et al (2013) Breast cancer in pre-menopausal women in West Africa: analysis of temporal trends and evaluation of risk factors associated with reproductive life. Breast 22:828–835. https://doi.org/10.1016/j.breast.2013.02.011

    Article  PubMed  Google Scholar 

  5. Aggarwal S, Verma SS, Aggarwal S et al (2021) Drug repurposing for breast cancer therapy: old weapon for new battle. Semin Cancer Biol 68:8–20. https://doi.org/10.1016/j.semcancer.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  6. Nowak-Sliwinska P, Scapozza L, Ruizi Altaba A (2019) Drug repurposing in oncology: compounds, pathways, phenotypes and computational approaches for colorectal cancer. BBA—Rev Cancer 1871:434–454

    CAS  Google Scholar 

  7. Zheng ZY, Li J, Li, et al (2018) Induction of N-Ras degradation by flunarizine-mediated autophagy. Sci Rep 8:16932. https://doi.org/10.1038/s41598-018-35237-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talib WH, Al-hadid SA, Ali MBW et al (2018) Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. BCTT 10:207–217. https://doi.org/10.2147/bctt.s167812

    Article  CAS  Google Scholar 

  9. Hussain SA, Panjagari NR, Singh RRB et al (2015) Potential herbs and herbal nutraceuticals: food applications and their interactions with food components. Crit Rev Food Sci 55:94–122. https://doi.org/10.1080/10408398.2011.649148

    Article  CAS  Google Scholar 

  10. Almatroodi SA, Alsahli MA, Almatroudi A et al (2019) Garlic and its active compounds: a potential candidate in the prevention of cancer by modulating various cell signalling pathways. Anti-Cancer Agents Med Chem 19:1314–1324. https://doi.org/10.2174/1871520619666190409100955

    Article  CAS  Google Scholar 

  11. Ma L, Chen S, Li S et al (2018) Effect of allicin against ischemia/hypoxia-Induced H9c2 myoblast apoptosis via eNOS/NO pathway-mediated antioxidant activity. Evid-Based Compl Alt 320:79–73

    Google Scholar 

  12. Luo R, Fang D, Hang H et al (2016) The mechanism in gastric cancer chemoprevention by allicin. Anti-Cancer Agents Med Chem 16:802–809. https://doi.org/10.2174/1871520616666151111115443

    Article  CAS  Google Scholar 

  13. Chen F, Li H, Wang Y et al (2016) Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway. J Funct Foods 25:523–536. https://doi.org/10.1016/j.jff.2016.06.027

    Article  CAS  Google Scholar 

  14. Zou X, Liang J, Sun J et al (2016) Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway. J Pharmacol Sci 131:233–240. https://doi.org/10.1016/j.jphs.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  15. Zhao D, Tahaney WM, Mazumdar A et al (2017) Molecularly targeted therapies for p53-mutant cancers. Cell Mol Life Sci 74:4171–4187. https://doi.org/10.1007/s00018-017-2575-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Bio 16:393–405. https://doi.org/10.1038/nrm4007

    Article  CAS  Google Scholar 

  17. Liang Y, Zhang JJ, Zhang QB et al (2013) Release test of alliin/alliinase double-layer tablet by HPLC-allicin determination. J Pharm Anal 3:187–192. https://doi.org/10.1016/j.jpha.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  18. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303. https://doi.org/10.1007/978-1-60761-987-1-18

    Article  CAS  PubMed  Google Scholar 

  19. Han A, Moon HG, Kim J et al (2013) Reliability of sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer 16:378–385. https://doi.org/10.4048/jbc.2013.16.4.378

    Article  PubMed  PubMed Central  Google Scholar 

  20. Clarke RB, Sims AH, Howell A (2008) The origin of estrogen receptor alpha-positive and alpha-negative breast cancer. Adv Exp Med Biol. https://doi.org/10.1007/978-0-387-69080-3-7

    Article  PubMed  Google Scholar 

  21. Gibson DA, Saunders PTK (2014) Endocrine disruption of oestrogen action and female reproductive tract cancers. Endocr Relat Cancer 21:13–31. https://doi.org/10.1530/erc-13-0342

    Article  Google Scholar 

  22. Ding JN, Kuang P (2021) Regulation of ER alpha stability and estrogen signaling in breast cancer by HOIL-1. Front Oncol 11:664–689

    Google Scholar 

  23. Farvid MS, Chen WY, Michels KB et al (2016) Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ Br Med J 353:i2343

    Article  Google Scholar 

  24. Borlinghaus J, Albrecht F, Gruhlke MC et al (2014) Allicin: chemistry and biological properties. Molecules 19:12591–12618

    Article  Google Scholar 

  25. Kim KH, Cho SJ, Kim BO et al (2016) Differential pro-apoptotic effect of allicin in oestrogen receptor-positive or -negative human breast cancer cells. J Funct Foods 25:341–353. https://doi.org/10.1016/j.jff.2016.06.019

    Article  CAS  Google Scholar 

  26. Lee CG, Lee HW, Kim BO et al (2015) Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: regulation of association between p65 and ER-α. J Funct Foods 15:172–185. https://doi.org/10.1016/j.jff.2015.03.017

    Article  CAS  Google Scholar 

  27. Wasylishen AR, Lozano G (2016) Attenuating the p53 pathway in human cancers: many means to the same end: cold spring harb. Perspect Med 6:93–100

    Google Scholar 

  28. Zhan MC, Yu DH, Liu JH et al (2005) Transcriptional repression of protein kinase C alpha via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1-P-glycoprotein phosphorylation. J Biol Chem 280:4825–4833. https://doi.org/10.1074/jbc.M407450200

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Wu X, Wang C et al (2010) Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-κB pathway in MCF-7 cells. FEBS Lett 584:3392–3397. https://doi.org/10.1016/j.febslet.2010.06.033

    Article  CAS  PubMed  Google Scholar 

  30. Duffy MJ, Synnott NC, O’Grady S et al (2020) Targeting p53 for the treatment of cancer. Sem Cancer Bio. https://doi.org/10.1016/j.semcancer.2020.07.005

    Article  Google Scholar 

  31. Synnott NC, Bauer MR, Madden S et al (2018) Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigation with the anti-p53 drug, PK11007. Cancer Lett 414:99–106. https://doi.org/10.1016/j.canlet.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  32. Bykov VJN, Eriksson SE, Bianchi J et al (2018) Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18:89–102. https://doi.org/10.1038/nrc.2017.109

    Article  CAS  PubMed  Google Scholar 

  33. Duffy MJ, Synnott NC, Crown J (2017) Mutant p53 as a target for cancer treatment. Eur J Cancer 83:258–265. https://doi.org/10.1016/j.ejca.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  34. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. The Breast 22:66–72. https://doi.org/10.1016/j.breast.2013.07.012

    Article  Google Scholar 

  35. Pranavathiyani G, Thanmalagan RR, Devi NL et al (2019) Integrated transcriptome interactome study of oncogenes and tumor suppressor genes in breast cancer. Genes Dis 6:78–87. https://doi.org/10.1016/j.gendis.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  36. Zhao J, Shi L, Zeng S et al (2018) Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol Oncol Semin Orig Investig 36:1–13

    Google Scholar 

  37. Wu MP, Wu LW, Chou CY (2016) The anticancer potential of thrombospondin-1 by inhibiting angiogenesis and stroma reaction during cervical carcinogenesis. Gynecol Minim Invasive Ther 5:48–53. https://doi.org/10.1016/j.gmit.2015.09.001

    Article  Google Scholar 

  38. Jayachandran A, Anaka M, Prithviraj P, at al, (2014) Thrombospondin1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5:5782–5797. https://doi.org/10.18632/oncotarget.2164

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cinatl J, Kotchetkov R, Scholz M et al (1999) Human cytomegalovirus infection decreases expression of thrombospondin-1 independent of the tumor suppressor protein p53. Am J Pathol 155:285–292. https://doi.org/10.1016/s0002-9440(10)65122-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rostila A, Puustinen A, Toljamo T et al (2012) Peroxiredoxins and tropomyosins as plasma biomarkers for lung cancer and asbestos exposure. Lung Cancer 77:450–459. https://doi.org/10.1016/j.lungcan.2012.03.024

    Article  PubMed  Google Scholar 

  41. Lin XD, Chen SQ, Qi YL et al (2012) Overexpression of thrombospondin-1 in stromal myofibroblasts is associated with tumor growth and nodal metastasis in gastric carcinoma. J Sur Oncol 106:94–100. https://doi.org/10.1002/jso.23037

    Article  CAS  Google Scholar 

  42. Heydari N, Nikbakhsh N, Sadeghi F et al (2018) Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer. Gene 655:25–29. https://doi.org/10.1016/j.gene.2018.02.032

    Article  CAS  PubMed  Google Scholar 

  43. Uen YH, Lin KY, Sun DP et al (2013) Comparative proteomics, network analysis and post-translational modification identification reveal differential profiles of plasma Con A-bound glycoprotein biomarkers in gastric cancer. J Proteomics 83:197–213. https://doi.org/10.1016/j.jprot.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  44. Tolek A, Wongkham C, Proungvitaya S et al (2012) Serum alpha(1)beta-glycoprotein and afamin ratio as potential diagnostic and prognostic markers in cholangiocarcinoma. Exp Biol Med 237:1142–1149. https://doi.org/10.1258/ebm.2012.012215

    Article  CAS  Google Scholar 

  45. Abdul-Rahman PS, Lim B-K, Hashim OH (2007) Expression of high-abundance proteins in sera of patients with endometrial and cervical cancers: analysis using 2-DE with silver staining and lectin detection methods. Electrophoresis 28:1989–1996. https://doi.org/10.1002/elps.200600629

    Article  CAS  PubMed  Google Scholar 

  46. Geeves MA, Hitchcock-DeGregori SE, Gunning PW (2015) A systematic nomenclature for mammalian tropomyosin isoforms. J Muscle Res Cell M 36:147–153. https://doi.org/10.1007/s10974-014-9389-6

    Article  CAS  Google Scholar 

  47. Yang R, Zheng G, Ren D et al (2018) The clinical significance and biological function of tropomyosin 4 in colon cancer. Biomed Pharmacother 101:1–7. https://doi.org/10.1016/j.biopha.2018.01.166

    Article  CAS  PubMed  Google Scholar 

  48. Prager-Khoutorsky M, Goncharov I, Rabinkov A et al (2007) Allicin inhibits cell polarization, migration and division via its direct effect on microtubules. Cell Motil Cytoskelet 64:321–337. https://doi.org/10.1002/cm.20185

    Article  CAS  Google Scholar 

  49. Sela U, Ganor S, Hecht I et al (2004) Allicin inhibits SDF-1α-induced T cell interactions with fibronectin and endothelial cells by down-regulating cytoskeleton rearrangement, Pyk-2 phosphorylation and VLA-4 expression. Immunology 111:391–399

    Article  CAS  Google Scholar 

  50. Miron T, Mironchik M, Mirelman D et al (2003) Inhibition of tumour growth by a novel approach: in situ allicin generation using targeted alliinase delivery. Mol Cancer Ther 2:1295–1301

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the foundation of the Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology [Grant No: XJDX1713].

Author information

Authors and Affiliations

Authors

Contributions

GM contributed to the design of the study, wrote the manuscript, and analyzed the data. MA revised the manuscript and contributed to the design of the study. ZA contributed to analyzing the data. XL made substantial contributions to the conception and design of the present study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinxia Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Consent to participate

All authors have given their consent to participate in this report and submit it to Molecular Biology Reports.

Consent to publish

All authors have given their consent to publish this report in the Molecular Biology Reports.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6722_MOESM1_ESM.tif

Supplementary file1 Fig. S1. Chromatography of allicin. The concentration of allicin stock solution was determined by HPLC, allicin was separated following the elution program of 60% methanol and 40%, 1% formic acid (TIF 692 kb)

11033_2021_6722_MOESM2_ESM.tif

Supplementary file2 Fig. S2. The dose-dependent effects of allicin on morphology of breast cancer cells (24h, ×100) (TIF 11565 kb)

Supplementary file3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitisha, G., Aimaiti, M., An, Z. et al. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol Biol Rep 48, 7261–7272 (2021). https://doi.org/10.1007/s11033-021-06722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06722-1

Keywords

Navigation