Skip to main content

Advertisement

Log in

Interstitial collagenase MMP-1 and EMMPRIN in cell lines and in clinical specimens of cervical squamous cell carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to elucidate the features of the expression of matrix metalloproteinases inducer—EMMPRIN (EMN) and matrix metalloproteinase 1 (MMP-1) in cell lines and in clinical samples of cervical squamous cell carcinoma (SCC).

Material and methods

The study was carried out using RT-PCR, densitometry and immunohistochemical studies (IHC) on commercial cell lines Siha, Caski, transformed with HPV16; HeLa, and C33A transformed with HPV18, line C33A without HPV, and in clinical samples of SCC and morphologically normal tissue adjacent to the tumor.

Results

The data obtained indicate that the expression of mRNA EMN and MMP-1 occurs in all cell lines at different levels. HPV type and number of genes copies had no effect on expression degree both EMN and MMP-1. Gene expression of EMN and MMP-1 has been investigated in tumor and normal tissues. MMP-1 expression in tumor tissue in SCC, as a rule, has been significantly increased (2–6 times) compared to normal tissue. It was found in 90% of tumor samples. It is known, that MMP-1 promotes the development of invasive and metastatic processes. EMN expression was lower in the tumor tissue than in normal tissue in most cases. An increase in EMN expression was noted only in some cases of SCC.

Conclusion

The data obtained indicate that MMP-1 can serve as a marker of the invasive potential of SCC. EMN, apparently, is not a major factor responsible for MMP-1 expression in SCC. Data are important for understanding the process of tumor development and may have prognostic value for the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data on the basis of which the conclusions in this article are made are presented in this manuscript.

Code availability

Adobe Photoshop Elements11, ImageJ1.48 V, World2010, Excel2010.

References

  1. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  2. Moss LAS, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899. https://doi.org/10.1016/j.ajpath.2012.08.044

    Article  CAS  Google Scholar 

  3. Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R (2019) Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic application in cancer. Crit Rev Oncol Hematol 137:57–83. https://doi.org/10.1016/j.critrevonc.2019.02.010

    Article  PubMed  Google Scholar 

  4. Amar S, Smith L, Fields GB (2017) Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 864(11 Pt A):1940–1951. https://doi.org/10.1016/j.bbamcr.2017.04.015

    Article  CAS  Google Scholar 

  5. Solov’eva NI (1998) Matrix metalloproteases and their biological functions. Bioorg Khim 24(4):245–255

    CAS  PubMed  Google Scholar 

  6. Liu M, Hu Y, Zhang MF, Luo KJ, Xie XY, Wen J et al (2016) MMP1 promotes tumor growth and metastasis in esophageal squamous cell carcinoma. Cancer Lett 377:97–104. https://doi.org/10.1016/j.canlet.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  7. Ozden F, Saygin C, Uzunaslan D, Onal B, Durak H, Aki H (2013) Expression of MMP-1, MMP-9 and TIMP-2 in prostate carcinoma and their influence on prognosis and survival. J Cancer Res Clin Oncol 139:1373–1382. https://doi.org/10.1007/s00432-013-1453-x

    Article  CAS  PubMed  Google Scholar 

  8. Langenskiöld M, Ivarsson ML, Holmdahl L, Falk P, Kåbjörn-Gustafsson C, Angenete E (2013) Intestinal mucosal MMP-1—a prognostic factor in colon cancer. Scand J Gastroenterol 48:563–569. https://doi.org/10.3109/00365521.2012.708939

    Article  CAS  PubMed  Google Scholar 

  9. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. https://doi.org/10.1038/nature04483

    Article  CAS  PubMed  Google Scholar 

  10. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD et al (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279(4):H1540-15477. https://doi.org/10.1152/ajpheart.2000.279.4.H1540

    Article  CAS  PubMed  Google Scholar 

  11. Shin DH, Dier U, Melendez JA, Hempel N (2015) Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochim Biophys Acta 1852:2593–2602. https://doi.org/10.1016/j.bbadis.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai QW, Li J, Li XQ, Wang JQ, Huang Y (2012) Expression of STAT3, MMP-1 and TIMP-1 in gastric cancer and correlation with pathological features. Mol Med Rep 5:1438–1442. https://doi.org/10.3892/mmr.2012.849

    Article  CAS  PubMed  Google Scholar 

  13. Xin X, Zeng X, Gu H, Li M, Tan H, Jin Z et al (2016) CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis. Sci Rep 6:2804. https://doi.org/10.1038/srep32804

    Article  CAS  Google Scholar 

  14. Kaushik DK, Hahn JN, Yong VW (2015) EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol 44–46:138–146. https://doi.org/10.1016/j.matbio.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  15. Aoki M, Koga K, Hamasak M, Egawa N, Nabeshima K (2017) Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts. Int J Oncol 50(6):2229–2235. https://doi.org/10.3892/ijo.2017.3986

    Article  CAS  PubMed  Google Scholar 

  16. Lee CL, Lam MP, Lam KK, Leung CO, Pang RT, Chu IK et al (2013) Identification of CD147 (basigin) as a mediator of trophoblast functions. Hum Reprod 28(11):2920–2929. https://doi.org/10.1093/humrep/det355

    Article  CAS  PubMed  Google Scholar 

  17. Sun J, Hemler ME (2001) Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 61(5):2276–2281

    CAS  PubMed  Google Scholar 

  18. Tang Y, Nakada MT, Kesavan P, McCabe F, Millar H, Rafferty P et al (2005) Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res 65(8):3193–3199. https://doi.org/10.1158/0008-5472.CAN-04-3605

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Zhao Z, Jiang T (2016) The multistep functions of EMMPRIN/CD147 in the tumor angiogenesis. Cell Mol Med 2:1–5. https://doi.org/10.21767/2573-5365.100012

    Article  CAS  Google Scholar 

  20. Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H et al (2006) Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res 4(6):371–377. https://doi.org/10.1158/1541-7786.MCR-06-0042

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, Wu J, Yuan SY (2013) MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart. Cell Physiol Biochem 32(3):663–764. https://doi.org/10.1159/000354470

    Article  CAS  PubMed  Google Scholar 

  22. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ (2003) Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci 44(3):1305–1311. https://doi.org/10.1167/iovs.02-0552

    Article  PubMed  Google Scholar 

  23. Biegler B, Kasinrerk W (2012) Reduction of CD147 surface expression on primary T cells leads to enhanced cell proliferation. Asian Pac J Allergy Immunol 30(4):259–267

    PubMed  Google Scholar 

  24. Cui HY, Guo T, Wang SJ, Zhao P, Dong ZS, Zhang Y et al (2012) Dimerization is essential for HAb18G/CD147 promoting tumor invasion via MAPK pathway. Biochem Biophys Res Commun 419(3):517–522. https://doi.org/10.1016/j.bbrc.2012.02.049

    Article  CAS  PubMed  Google Scholar 

  25. Kugaevskaya EV, Timoshenko OS, Gureeva TA, Solovvieva NI (2019) The role of stromal proteolytic systems in cancer progression. General Reanimatol 15(5):106–126. https://doi.org/10.15360/1813-9779-2019-5-106-126

    Article  Google Scholar 

  26. Zur Hausen H (1996) Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1288(2):F55-78. https://doi.org/10.1016/0304-419x(96)00020-0

    Article  PubMed  Google Scholar 

  27. Zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384(2):260–265. https://doi.org/10.1016/j.virol.2008.11.046

    Article  CAS  PubMed  Google Scholar 

  28. Rogovskaya SI, Shabalova IP, Mikheeva IV, Minkina GN, Podzolkova NM, Shipulina OY et al (2013) Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western countries of the former Soviet Union, Caucasus region and Central Asia. Vaccine. https://doi.org/10.1016/j.vaccine.2013.06.043

    Article  PubMed  Google Scholar 

  29. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10(8):550–560. https://doi.org/10.1038/nrc2886

    Article  CAS  PubMed  Google Scholar 

  30. Zhu D, Ye M, Zhang W (2015) E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells. Int J Clin Exp Pathol 8(5):4981–4989

    PubMed  PubMed Central  Google Scholar 

  31. McLaughlin-Drubin ME, Munger K (2009) The human papillomavirus E7 oncoprotein. Virology 384(2):335–344. https://doi.org/10.1016/j.virol.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  32. Solovyeva NI, Timoshenko OS, Gureeva TA, Kugaevskaya EV (2015) Matrix metalloproteinases and their endogenous regulators in squamous cervical carcinoma (review of the own data). Biomed Khim 61(6):694–704. https://doi.org/10.18097/PBMC20156106694

    Article  CAS  Google Scholar 

  33. Azevedo Martins JM, Rabelo-Santos SH, do Amaral Westin MC, Zeferino LC, (2020) Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: a competing risk analysis. BMC Cancer 20:660. https://doi.org/10.1186/s12885-020-07150-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian R, Li X, Gao Y, Li Y, Yang P, Wang K (2018) Identification and validation of the role of matrix metalloproteinase-1 in cervical cancer. Int J Oncol 52(4):1198–1208. https://doi.org/10.3892/ijo.2018.4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ju XZ, Yang JM, Zhou XY, Li ZT, Wu XH (2008) EMMPRIN expression as a prognostic factor in radiotherapy of cervical cancer. Clin Cancer Res 14(2):494–501. https://doi.org/10.1158/1078-0432.CCR-07-1072

    Article  CAS  PubMed  Google Scholar 

  36. Fan J, Wang Yi W, Wang J (2017) The clinicopatological significance and prognostic value of EMMPRIN overexpression in cancer: evidence from 39 cohort studies. Oncotarget 8(47):82643–82660. https://doi.org/10.18632/oncotarget.19740

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ryzhakova OS, Gureeva TA, Zhurbitskaia VA, Solov’eva NI (2007) Expression of interstitial collagenase and its endogenous regulators in immortalized and transformed by E7 gene HPV16 fibroblasts. Biochem Moscow Suppl Ser B 1(4):342–347. https://doi.org/10.1134/S1990750807040099

    Article  Google Scholar 

  38. Dabbs DJ (2006) Diagnostic Immunohistochemistry, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  39. Solov’eva NI, Vinokurova CV, Ryzhakova OS, Gureeva TA, Tsvetkova IV (2009) Expression of gelatinases A and B and their endogenous regulators in immortal and transformed fibroblasts. Biochem Moscow Suppl Ser. B 3(3):266–271. https://doi.org/10.1134/S1990750809030068

    Article  Google Scholar 

  40. Ryzhakova OS, Solov’eva NI (2013) Matrix metalloproteinases (MMP)—MMP-1–2–9 and its endogenous activity regulators in transformed by E7 oncogene HPV16 and HPV18 cervical carcinoma cell lines. Biomed Khim 59(5):530–540. https://doi.org/10.18097/pbmc20135905530

    Article  CAS  PubMed  Google Scholar 

  41. Timoshenko OS, Gureeva TA, Kugaevskaya EV, Zavalishina LE, Solovyeva NI (2017) Interstitial collagenase and their endogenous regulators in squamous cell cervical carcinoma. Biomed Khim 63(6):513–519. https://doi.org/10.18097/PBMC20176306513

    Article  CAS  PubMed  Google Scholar 

  42. Timoshenko OS, Gureeva TA, Kugaevskaya EV, Zavalishina LE, Andreeva YuYu, Solovyeva NI (2018) Gelatinases A and B and their endogenous regulators in the corpus uteri in squamous cell cervical carcinoma. Arkh Patol 80(6):22–28. https://doi.org/10.17116/patol20188006122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was done in the framework of the Russian Federation fundamental research program for the long-term period for 2021-2030

Funding

Russian Federation fundamental research program.

Author information

Authors and Affiliations

Authors

Contributions

NIS—the concept of the research, data analysis, writing articles; OST—isolation RNA from cells and tissues, RT-PCR, separation of products in agarose gel; EVK—preparation of experimental samples from postoperative tissues, carrying out an immunohistochemical reaction; TAG—cultivation of cell cultures. All authors read and approved the manuscript.

Corresponding author

Correspondence to Nina I. Solovyeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Samples of squamous cell carcinomas (SCC) of the cervix were obtained from tumor tissue bank of N.N. Blokhin National Medical Research Center of Oncology under the approval of the Ethical Board of the Center. Informed consent was obtained from all patients.

Consent to participate and publication

Informed consent to participate and publication was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyeva, N.I., Timoshenko, O.S., Kugaevskaya, E.V. et al. Interstitial collagenase MMP-1 and EMMPRIN in cell lines and in clinical specimens of cervical squamous cell carcinoma. Mol Biol Rep 48, 6879–6886 (2021). https://doi.org/10.1007/s11033-021-06689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06689-z

Keywords

Navigation