Skip to main content
Log in

The role of tumor necrosis factor receptor superfamily member 4 (TNFRSF4) gene expression in diagnosis and prognosis of acute myeloid leukemia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objectives

Acute myeloid leukemia (AML) is still challenging in predicting the prognosis due to its high heterogeneity. Molecular aberrations and abnormalities play a significant prognostic role in AML patients. Our aim of the study was to investigate the prognostic role of TNFRSF4 gene expression in AML patients and its potential effect on treatment protocols.

Methods

Bone marrow mononuclear cells were analyzed for TNFRSF4 expression by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 80 newly diagnosed AML patients and 80 control subjects.

Results

TNFRSF4 was significantly overexpressed in the AML patients (p < 0.001). TNFRSF4 expression was associated with unfavorable clinical outcomes including treatment response, relapse free survival, and overall survival. On multivariate testing, TNFRSF4 high expression proved to be an independent prognostic marker for clinical remission and relapse free survival but not overall survival.

Conclusion

TNFRSF4 expression was revealed as an unfavorable prognostic marker and might be a target for immunotherapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abo Elwafa R, Gamaleldin M, Ghallab O (2019) The clinical and prognostic significance of FIS1, SPI1, PDCD7, and Ang2 expression levels in acute myeloid leukemia. Cancer Genet 234:84–95

    Article  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  3. Gu S, Zi J, Han Q, Song C, Ge Z (2020) Elevated TNFRSF4 gene expression is a predictor of poor prognosis in non-M3 acute myeloid leukemia. Cancer Cell Int 20(146):020–01213

    Google Scholar 

  4. Bhatnagar B, Garzon R (2014) The use of molecular genetics to refine prognosis in acute myeloid leukemia. Curr Hematol Malig Rep 9(2):148–157

    Article  PubMed  Google Scholar 

  5. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Bloomfield CD (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100(13):4325–4336. https://doi.org/10.1182/blood-2002-03-0772

    Article  CAS  PubMed  Google Scholar 

  6. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Eley G (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074. https://doi.org/10.1056/NEJMoa1301689

    Article  CAS  PubMed  Google Scholar 

  7. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Campbell PJ (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/NEJMoa1516192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474. https://doi.org/10.1182/blood-2009-07-235358

    Article  CAS  PubMed  Google Scholar 

  9. O’Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, Ogba N (2017) Acute Myeloid Leukemia, Version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15(7):926–957

    Article  PubMed  Google Scholar 

  10. Zhu YM, Wang PP, Huang JY, Chen YS, Chen B, Dai YJ, Shen Y (2017) Gene mutational pattern and expression level in 560 acute myeloid leukemia patients and their clinical relevance. J Transl Med 15(1):017–1279

    Article  Google Scholar 

  11. Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56(3):379–390

    Article  CAS  PubMed  Google Scholar 

  12. Dumbar TS, Gentry GA, Olson MOJ (1989) Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry 28(24):9495–9501. https://doi.org/10.1021/bi00450a037

    Article  CAS  PubMed  Google Scholar 

  13. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Valk PJ (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106(12):3747–3754

    Article  CAS  PubMed  Google Scholar 

  14. Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Kriwacki RW (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife 2(5):13571

    Article  Google Scholar 

  15. Kindler T, Lipka DB, Fischer T (2010) FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116(24):5089–5102. https://doi.org/10.1182/blood-2010-04-261867

    Article  CAS  PubMed  Google Scholar 

  16. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665. https://doi.org/10.1038/nrc1169

    Article  CAS  PubMed  Google Scholar 

  17. Rosnet O, Bühring HJ, deLapeyrière O, Beslu N, Lavagna C, Marchetto S, Birnbaum D (1996) Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 95(3–4):218–223

    Article  CAS  PubMed  Google Scholar 

  18. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, Small D (1996) Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 87(3):1089–1096

    Article  CAS  PubMed  Google Scholar 

  19. Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jindra PT, Conway SE, Ricklefs SM, Porcella SF, Anzick SL, Haagenson M, Abdi R (2016) Analysis of a genetic polymorphism in the costimulatory molecule TNFSF4 with hematopoietic stem cell transplant outcomes. Biol Blood Marrow Transplant 22(1):27–36

    Article  CAS  PubMed  Google Scholar 

  21. Hori T (2006) Roles of OX40 in the pathogenesis and the control of diseases. Int J Hematol 83(1):17–22

    Article  CAS  PubMed  Google Scholar 

  22. Wythe SE, Dodd JS, Openshaw PJ, Schwarze J (2012) OX40 ligand and programmed cell death 1 ligand 2 expression on inflammatory dendritic cells regulates CD4 T cell cytokine production in the lung during viral disease. J Immunol 188(4):1647–1655

    Article  CAS  PubMed  Google Scholar 

  23. Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T (1998) Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem 273(10):5808–5814

    Article  CAS  PubMed  Google Scholar 

  24. Bossini-Castillo L, Broen JC, Simeon CP, Beretta L, Vonk MC, Ortego-Centeno N, Rueda B (2011) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis 70(4):638–641

    Article  CAS  PubMed  Google Scholar 

  25. Ria M, Lagercrantz J, Samnegård A, Boquist S, Hamsten A, Eriksson P (2011) A common polymorphism in the promoter region of the TNFSF4 gene is associated with lower allele-specific expression and risk of myocardial infarction. PLoS ONE 6(3):0017652

    Article  Google Scholar 

  26. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66

    Article  CAS  PubMed  Google Scholar 

  27. Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol. https://doi.org/10.3389/fonc.2015.00034

    Article  PubMed  PubMed Central  Google Scholar 

  28. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, Daver NG (2019) The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125(9):1470–1481

    Article  CAS  PubMed  Google Scholar 

  29. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, Bloomfield CD (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21(24):4642–4649

    Article  PubMed  Google Scholar 

  30. Sheikhha MH, Awan A, Tobal K, Liu Yin JA (2003) Prognostic significance of FLT3 ITD and D835 mutations in AML patients. Hematol J 4(1):41–46

    Article  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Li W, Chen Y, Zhou L (2021) Long non-coding RNA SNHG14 affects the proliferation and apoptosis of childhood acute myeloid leukaemia cells by modulating the miR-193b-3p/MCL1 axis. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11729

    Article  PubMed  PubMed Central  Google Scholar 

  33. Puntigam LK, Jeske SS, Götz M, Greiner J, Laban S, Theodoraki MN, Schuler PJ (2020) Immune checkpoint expression on immune cells of HNSCC patients and modulation by chemo- and immunotherapy. Int J Mol Sci 21(15):5181. https://doi.org/10.3390/ijms21155181

    Article  CAS  PubMed Central  Google Scholar 

  34. Kumar P, Bhattacharya P, Prabhakar BS (2018) A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 95:77–99. https://doi.org/10.1016/j.jaut.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaer DA, Hirschhorn-Cymerman D, Wolchok JD (2014) Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer 2:7. https://doi.org/10.1186/2051-1426-2-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Manku H, Langefeld CD, Guerra SG, Malik TH, Alarcon-Riquelme M, Anaya JM, Vyse TJ (2013) Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet 9(7):e1003554. https://doi.org/10.1371/journal.pgen.1003554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gwyer Findlay E, Danks L, Madden J, Cavanagh MM, McNamee K, McCann F, Hussell T (2014) OX40L blockade is therapeutic in arthritis, despite promoting osteoclastogenesis. Proc Natl Acad Sci U S A 111(6):2289–2294. https://doi.org/10.1073/pnas.1321071111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou B, Mei F, Wu C, Liu Z, Xu H, Cui Y (2020) Effect of miR-744 on ameliorating heart allograft rejection in BALB/c mice via regulation of TNFRSF4 expression in regulatory T cells. Transplant Proc 52(1):398–405. https://doi.org/10.1016/j.transproceed.2019.10.014

    Article  CAS  PubMed  Google Scholar 

  39. He D, Yang CX, Sahin B, Singh A, Shannon CP, Oliveria JP, Tebbutt SJ (2019) Whole blood vs PBMC: compartmental differences in gene expression profiling exemplified in asthma. Allergy Asthma Clin Immunol 15:67. https://doi.org/10.1186/s13223-019-0382-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao Y, Du L, Li F, Ding J, Li G, Cao Q, Yang P (2020) The haplotypes of various TNF related genes associated with scleritis in Chinese Han. Hum Genomics 14(1):46. https://doi.org/10.1186/s40246-020-00296-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nuebling T, Schumacher CE, Hofmann M, Hagelstein I, Schmiedel BJ, Maurer S, Salih HR (2018) The immune checkpoint modulator OX40 and its ligand OX40L in NK-cell immunosurveillance and acute myeloid leukemia. Cancer Immunol Res 6(2):209–221. https://doi.org/10.1158/2326-6066.Cir-17-0212

    Article  CAS  PubMed  Google Scholar 

  42. Knaus HA, Berglund S, Hackl H, Blackford AL, Zeidner JF, Montiel-Esparza R, Gojo I (2018) Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. https://doi.org/10.1172/jci.insight.120974

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the patients and their families for participating in this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the current work. M.G. and S.I. had contributed substantially to the conception and design of the study, acquisition of data analyzed and interpreted the data, had performed laboratory investigations of the participants, analysis, and interpretation of the data. All the authors approved the final version submitted for publication and take responsibility for the statements made in the published article.

Corresponding author

Correspondence to Marwa Ahmed Gamaleldin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

Written informed consent was signed by each participant in the study. This study was approved by the Ethics Committee of Alexandria Faculty of Medicine.

Consent for publication

Consent was obtained from participants to publish the results with keeping the confidentiality of their personal information.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamaleldin, M.A., Imbaby, S.A.E. The role of tumor necrosis factor receptor superfamily member 4 (TNFRSF4) gene expression in diagnosis and prognosis of acute myeloid leukemia. Mol Biol Rep 48, 6831–6843 (2021). https://doi.org/10.1007/s11033-021-06682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06682-6

Keywords

Navigation