Skip to main content

Advertisement

Log in

Distinct genetic landscape and a low response to doxorubicin in a luminal-A breast cancer cell line of Pakistani origin

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Breast cancers exhibit genetic heterogeneity which causes differential responses to various chemotherapy agents. Given the unique demographic and genomic background in South Asia, genetic architecture in breast cancers is not fully explored.

Methods and results

In this study, we determined the genetic landscape of our previously established luminal-A subtype breast cancer cell line (BC-PAK1), and compared it with a Caucasian origin MCF7 breast cancer cell line of the same molecular subtype. Deep whole-exome sequencing (100X) was performed from early passages of the primary cancer cells using the Illumina NextSeq500. Data analysis with in silico tools showed novel non-silent somatic mutations previously not described in breast cancers, including a frameshift insertion (p.Ala1591AlafsTer28) in CIC, and a frameshift deletion (p.Lys333LysfsTer21) in PABPC1. Five genes CDC27, PIK3CG, ARAP3, RAPGEF1, and EFNA3, related with cell cycle pathway (hsa04110), ErbB signaling pathway (hsa04012), Ras signaling pathway (hsa04014), and Rap1 signaling pathway (hsa04015) were found to have recurrent non-silent somatic mutations. Further, the major contribution of COSMIC signatures 3 (failure of DNA double-strand break repair by homologous recombination), and 12 (transcriptional strand-bias for T>C substitutions) was observed. Also, the somatic mutations landscape in BC-PAK1 was found to be different as compared to the MCF7 cell line. The unique genetic landscape of BC-PAK1 might be responsible for significantly reduced response to doxorubicin than the MCF7 cell line.

Conclusion

This study presents a distinct genetic architecture in luminal-A breast cancer potentially responsible for differential response to chemotherapy. Further studies on large cohorts of breast cancer patients are suggested for implementation in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data presented herein has been included in the main manuscript and supplementary material.

Code availability

The bioinformatics tools/codes used in the analysis are freely available in the GitHub repository or at the tools’ websites.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68:394–424

    Google Scholar 

  2. Amir E, Freedman OC, Seruga B, Evans DG (2010) Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102:680–691

    Article  PubMed  Google Scholar 

  3. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chin L, Hahn WC, Getz G, Meyerson M (2011) Making sense of cancer genomic data. Genes Dev 25:534–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  6. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva JM, Marran K, Parker JS, Silva J, Golding M et al (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Testa U, Castelli G, Pelosi E (2020) Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med Sci 8:18

    CAS  Google Scholar 

  9. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai X, Li T, Bai Z, Yang Y, Liu X et al (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5:2929–2943

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrari A, Vincent-Salomon A, Pivot X, Sertier A-S, Thomas E et al (2016) A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat Commun 7:12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rakha EA, Pareja FG (2021) New advances in molecular breast cancer pathology. In: Proceedings of seminars in cancer biology, vol 72, pp 102–113. Elsevier, Amsterdam

  13. Clusan L, Le Goff P, Flouriot G, Pakdel F (2021) A closer look at estrogen receptor mutations in breast cancer and their implications for estrogen and antiestrogen responses. Int J Mol Sci 22:756

    Article  CAS  PubMed Central  Google Scholar 

  14. Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y et al (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Begum N (2018) Breast cancer in Pakistan: a looming epidemic. J College Phys Surg 28:87–88

    Google Scholar 

  17. Malik SS, Baig M, Khan MB, Masood N (2019) Survival analysis of breast cancer patients with different treatments: a multicentric clinicopathological study. J Pak Med Assoc 69:976–980

    PubMed  Google Scholar 

  18. Mughal AJ (2015) Establishment and characterization of human breast cancer cell line of Pakistani origin (thesis), University of Karachi, Karachi, Pakistan

  19. Shakeel M, Irfan M, Khan IA (2018) Rare genetic mutations in Pakistani patients with dilated cardiomyopathy. Gene 673:134–139

    Article  CAS  PubMed  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics website: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc

  22. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30:2114–2120

    CAS  Google Scholar 

  23. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25:2078–2079

    CAS  Google Scholar 

  25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al (2010) The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE et al (2018) Functional genomic landscape of acute myeloid leukaemia. Nature 562:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR et al (2016) The ensembl variant effect predictor. Genome Biol 17:1–14

    Article  CAS  Google Scholar 

  29. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985

    Article  CAS  PubMed  Google Scholar 

  31. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  CAS  PubMed  Google Scholar 

  32. Blokzijl F, Janssen R, van Boxtel R, Cuppen E (2018) Mutational patterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mularoni L, Sabarinathan R, Deu-Pons J, Gonzalez-Perez A, López-Bigas N (2016) OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol 17:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Heinrich V, Kamphans T, Stange J, Parkhomchuk D, Hecht J et al (2013) Estimating exome genotyping accuracy by comparing to data from large scale sequencing projects. Genome Med 5:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Samuels DC, Han L, Li J, Quanghu S, Clark TA et al (2013) Finding the lost treasures in exome sequencing data. Trends Genet 29:593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Lin H, Zhao H, Hao Y, Mort M et al (2014) Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Hum Mol Genet 23:3024–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  CAS  Google Scholar 

  38. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG et al (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183–R183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H et al (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21:440–446

    Article  CAS  Google Scholar 

  41. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al (2015) Clock-like mutational processes in human somatic cells. Nat Genet 47:1402–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jarvis MC, Ebrahimi D, Temiz NA, Harris RS (2018) Mutation signatures including APOBEC in cancer cell lines. JNCI Cancer Spectr 2:002

    Article  Google Scholar 

  44. GeneCards (2019) GeneCards, The human gene database (PABPC1 Gene (Protein Coding)). https://www.genecards.org/cgi-bin/carddisp.pl?gene=PABPC1

  45. GeneCards (2019) GeneCards, The human gene database (KMT2C Gene (Protein Coding)). https://www.genecards.org/cgi-bin/carddisp.pl?gene=KMT2C

  46. Pareja F, Lee JY, Brown DN, Piscuoglio S, Gularte-Merida R et al (2019) The genomic landscape of mucinous breast cancer. J Natl Cancer Inst 111:216

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed with funds granted to the institute, Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi-75270, Pakistan, by the Searle Pharmaceuticals Pakistan Ltd. The funding agency had no role in the study design and presentation of the results.

Author information

Authors and Affiliations

Authors

Contributions

MS: performed NGS experimental work, bioinformatics analysis, data visualization, and manuscript preparation; SAK: conceived the study, performed experimental work, and manuscript preparation; AJM: performed experimental work to establish the BC-PAK1 cell line; MI: Performed data analysis, DCH: supervised in the establishment of the cell line, intellectual insights, and manuscript review; MIC: overall supervised the study, intellectual insights, and manuscript review; MA: performed DNA extraction from the cultured BC-PAK1 cells; IAK: intellectual insights, and manuscript review.

Corresponding authors

Correspondence to Salman Ahmed Khan or Ishtiaq Ahmad Khan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 1658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, M., Khan, S.A., Mughal, A.J. et al. Distinct genetic landscape and a low response to doxorubicin in a luminal-A breast cancer cell line of Pakistani origin. Mol Biol Rep 48, 6821–6829 (2021). https://doi.org/10.1007/s11033-021-06681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06681-7

Keywords

Navigation