Skip to main content

Advertisement

Log in

The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

Cancer is the second major threat to human society and one of the main challenges facing healthcare systems. One of the main problems of cancer care is the metastases of cancer cells that cause 90% of deaths due to cancer. Multiple molecular mechanisms are involved in cancer cell metastasis. Therefore, a better understanding of these molecular mechanisms is necessary for designing restrictive strategies against cancer cell metastasis. Accumulating data suggests that MicroRNAs (miRNAs) are involved in metastasis and invasion of human tumors through regulating multiple genes expression levels that are involved in molecular mechanisms of metastasis. The goal of this review is to present the molecular pathways by which the miR 200 family manifests its effects on EMT, cancer stem cells, angiogenesis, anoikis, and the effects of tumor cell metastases.

Methods

A detailed literature search was conducted to find information about the role of the miR-200 family in the processes involved in metastasis in various databases.

Results

Numerous lines of evidence revealed an association between the mir-200 family and metastasis of human tumors by impressing processes such as cancer stem cells, EMT, angiogenesis, and anoikis.

Conclusions

Understanding the molecular mechanisms associated with metastasis in which the miR-200 family is involved can be effective in treating metastatic cancers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomeh MA, Hadianamrei R, Zhao X (2019) A review of curcumin and its derivatives as anticancer agents. Int J Mol Med 20(5):1033

    CAS  Google Scholar 

  2. Birkbak NJ, McGranahan N (2020) Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37(1):8–19

    Article  CAS  PubMed  Google Scholar 

  3. Jafri MA, Al-Qahtani MH, Shay JW (eds) (2017) Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Seminars in cancer biology. Elsevier, Amsterdam

    Google Scholar 

  4. Si W, Shen J, Zheng H, Fan W (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet 11(1):25

    Article  Google Scholar 

  5. Zhang X, Cui R, Cui M, Wang H, Yao X, Zhang D et al (2019) Circulating MicroRNAs in cancer: potential and challenge. Front Genet 10:626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Diaz-Riascos ZV, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L et al (2019) Expression and role of microRNAs from the miR-200 family in the tumor formation and metastatic propensity of pancreatic cancer. Mol Ther Nucleic Acids 17:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Zhang L (2017) Members of the microRNA-200 family are promising therapeutic targets in cancer. Exp Ther Med 14(1):10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu S-J, Hu J-Y, Kuang X-Y, Luo J-M, Hou Y-F, Di G-H et al (2013) MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res 19(6):1389–1399

    Article  CAS  PubMed  Google Scholar 

  9. Sohn EJ (2018) MicroRNA 200c–3p regulates autophagy via upregulation of endoplasmic reticulum stress in PC-3 cells. Cancer Cell Int 18(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun. https://doi.org/10.1038/ncomms3427

    Article  PubMed  Google Scholar 

  11. Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13(2):R45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mongroo PS, Rustgi AK (2010) The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 10(3):219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zaravinos A (2015) The regulatory role of microRNAs in EMT and cancer. J Oncol. https://doi.org/10.1155/2015/865816

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wendt MK, Balanis N, Carlin CR, Schiemann WP (2014) STAT3 and epithelial–mesenchymal transitions in carcinomas. Jak-Stat 3(2):e28975

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S et al (2011) An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22(10):1686–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishino H, Takano S, Yoshitomi H, Suzuki K, Kagawa S, Shimazaki R et al (2017) Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med 6(11):2686–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung VY, Tan TZ, Tan M, Wong MK, Kuay KT, Yang Z et al (2016) GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 6(1):19943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farris JC, Pifer PM, Zheng L, Gottlieb E, Denvir J, Frisch SM (2016) Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis. Mol Cancer Res MCR 14(6):528–538

    Article  CAS  PubMed  Google Scholar 

  19. Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L et al (2013) Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 288(32):22993–23008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao Y, Baker D, ten Dijke P (2019) TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Med 20(11):2767

    CAS  Google Scholar 

  21. Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S et al (2014) MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer 14(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Ruan B, You N, Huang Q, Liu W, Dang Z et al (2013) Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the β-catenin pathway in hepatic oval cells. PLoS ONE 8(11):e79409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shang Y, Chen H, Ye J, Wei X, Liu S, Wang R (2017) HIF-1α/Ascl2/miR-200b regulatory feedback circuit modulated the epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Exp Cell Res 360(2):243–256

    Article  CAS  PubMed  Google Scholar 

  24. Williams LV, Veliceasa D, Vinokour E, Volpert OV (2013) miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS ONE 8(12):e83991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang X, Hu Q, Hu L-X, Lin X-R, Liu J-Q, Lin X et al (2017) miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discov Med 24(131):75–85

    PubMed  Google Scholar 

  26. Tamagawa S, Beder LB, Hotomi M, Gunduz M, Yata K, Grenman R et al (2014) Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int J Mol Med 33(4):879–886

    Article  CAS  PubMed  Google Scholar 

  27. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ (2013) Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia 15(2):180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J et al (2013) MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62(9):1315–1326

    Article  CAS  PubMed  Google Scholar 

  29. Arunkumar G, Deva Magendhra Rao AK, Manikandan M, Prasanna Srinivasa Rao H, Subbiah S, Ilangovan R et al (2018) Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncol Lett 15(1):649–57

    PubMed  Google Scholar 

  30. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y et al (2012) MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 19(3):656–664

    Article  Google Scholar 

  31. Choi B-J, Park S-A, Lee S-Y, Cha YN, Surh Y-J (2017) Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of snail: a potential role of Sox9. Sci Rep 7(1):15918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chan YC, Khanna S, Roy S, Sen CK (2011) miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286(3):2047–2056

    Article  CAS  PubMed  Google Scholar 

  33. Koo T, Cho BJ, Kim DH, Park JM, Choi EJ, Kim HH et al (2017) MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget 8(39):65457–65468

    Article  PubMed  PubMed Central  Google Scholar 

  34. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V (2017) Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med 6(12):2115–2125

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261

    Article  CAS  PubMed  Google Scholar 

  36. Franco SS, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J et al (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(2):738

    Article  CAS  Google Scholar 

  37. Lagasse E (2008) Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther 15(2):136–142

    Article  CAS  PubMed  Google Scholar 

  38. Matsui WH (2016) Cancer stem cell signaling pathways. Medicine 95(1 Suppl 1):S8–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S (2019) Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 8(8):840

    Article  PubMed Central  CAS  Google Scholar 

  40. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng X, Wang Z, Fillmore R, Xi Y (2014) MiR-200, a new star miRNA in human cancer. Cancer Lett 344(2):166–173

    Article  CAS  PubMed  Google Scholar 

  42. Roy SS, Hsu CH, Wen ZH, Lin CS, Chakraborty C (2011) A hypothetical relationship between the nuclear reprogramming factors for induced pluripotent stem (iPS) cells generation—bioinformatic and algorithmic approach. Med Hypotheses 76(4):507–511

    Article  PubMed  Google Scholar 

  43. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    Article  CAS  PubMed  Google Scholar 

  44. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658

    Article  CAS  PubMed  Google Scholar 

  45. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8(6):843–852

    Article  CAS  PubMed  Google Scholar 

  46. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28(20):3157–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C et al (2013) Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci USA 110(8):2858–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lim Y-Y, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E et al (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(10):2256–2266

    CAS  PubMed  Google Scholar 

  49. Feng Z-M, Qiu J, Chen X-W, Liao R-X, Liao X-Y, Zhang L-P et al (2015) Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer 15(1):645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Carnero A, Lleonart M (2016) The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays 38(Suppl 1):S65-74

    Article  PubMed  Google Scholar 

  51. van den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M et al (2014) Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 5(1):5203

    Article  PubMed  CAS  Google Scholar 

  52. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  CAS  PubMed  Google Scholar 

  53. Fam NP, Verma S, Kutryk M, Stewart DJ (2003) Clinician guide to angiogenesis. Circulation 108(21):2613–2618

    Article  PubMed  Google Scholar 

  54. Vailhé B, Vittet D, Feige J-J (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81(4):439–452

    Article  PubMed  Google Scholar 

  55. Griggs J, Metcalfe JC, Hesketh R (2001) Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2(2):82–87

    Article  CAS  PubMed  Google Scholar 

  56. Kruger EA, Duray PH, Price DK, Pluda JM, Figg WD (eds) (2001) Approaches to preclinical screening of antiangiogenic agents. Seminars in oncology. Elsevier, Amsterdam

    Google Scholar 

  57. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ribatti D, Vacca A (2008) Overview of angiogenesis during tumor growth. In: Figg WD, Folkman J (eds) Angiogenesis. Springer, Boston, pp 161–8

    Chapter  Google Scholar 

  59. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26(2):281–290

    Article  CAS  PubMed  Google Scholar 

  60. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tortora G, Melisi D, Ciardiello F (2004) Angiogenesis: a target for cancer therapy. Curr Pharm Des 10(1):11–26

    Article  CAS  PubMed  Google Scholar 

  62. Milani AT, Khadem-Ansari MH, Rasmi Y (2019) Effects of thyroxine on adhesion molecules and proinflammatory cytokines secretion on human umbilical vein endothelial cells. Res Pharm Sci 14(3):237–246

    Article  PubMed  PubMed Central  Google Scholar 

  63. Makrilia N, Lappa T, Xyla V, Nikolaidis I, Syrigos K (2009) The role of angiogenesis in solid tumours: an overview. Eur J Intern Med 20(7):663–671

    Article  CAS  PubMed  Google Scholar 

  64. Pożarowska D, Pożarowski P (2016) The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol 41(3):311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang Y, Wang L, Chen C, Chu X (2018) New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol Cancer 17(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Koutsaki M, Libra M, Spandidos DA, Zaravinos A (2017) The miR-200 family in ovarian cancer. Oncotarget 8(39):66629

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A et al (2010) Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst Biol 4(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Choi Y-C, Yoon S, Jeong Y, Yoon J, Baek K (2011) Regulation of vascular endothelial growth factor signaling by miR-200b. Mol Cells 32(1):77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roybal JD, Zang Y, Ahn Y-H, Yang Y, Gibbons DL, Baird BN et al (2011) miR-200 inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer 9(1):25–35

    Article  CAS  Google Scholar 

  70. Chan YC, Roy S, Khanna S, Sen CK (2012) Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol 32(6):1372–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sinha M, Ghatak S, Roy S, Sen CK (2015) microRNA–200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal 22(14):1257–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dong H, Weng C, Bai R, Sheng J, Gao X, Li L et al (2019) The regulatory network of miR-141 in the inhibition of angiogenesis. Angiogenesis 22(2):251–262

    Article  CAS  PubMed  Google Scholar 

  73. Choi SK, Kim HS, Jin T, Hwang EH, Jung M, Moon WK (2016) Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer. https://doi.org/10.1186/s12885-016-2620-7

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gilmore AP (2005) Anoikis. Cell Death Differ. https://doi.org/10.1038/sj.cdd.4401723

    Article  PubMed  Google Scholar 

  75. Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272(2):177–185

    Article  CAS  PubMed  Google Scholar 

  76. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76(11):1352–1364

    Article  CAS  PubMed  Google Scholar 

  77. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13(5):555–562

    Article  CAS  PubMed  Google Scholar 

  78. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta Mol Cell Res 1833(12):3481–3498

    Article  CAS  Google Scholar 

  79. Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis—anoikis.” Apoptosis 7(3):247–260

    Article  CAS  PubMed  Google Scholar 

  80. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241

    Article  CAS  PubMed  Google Scholar 

  82. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535

    Article  CAS  PubMed  Google Scholar 

  83. Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M (2019) Berberine as a potential autophagy modulator. J Cell Physiol. https://doi.org/10.1002/jcp.28325

    Article  PubMed  Google Scholar 

  84. Aoudjit F, Vuori K (2001) Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 152(3):633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Malagobadan S, Nagoor NH (2015) Evaluation of microRNAs regulating anoikis pathways and its therapeutic potential. Biomed Res Int. https://doi.org/10.1155/2015/716816

    Article  PubMed  PubMed Central  Google Scholar 

  86. Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6(9):6472–6498

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552

    Article  CAS  PubMed  Google Scholar 

  88. Zhang X, Zhang B, Gao J, Wang X, Liu Z (2013) Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J Biol Chem 288(45):32742–32752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226(2):380–393

    Article  CAS  PubMed  Google Scholar 

  90. Rohwer N, Welzel M, Daskalow K, Pfander D, Wiedenmann B, Detjen K et al (2008) Hypoxia-inducible factor 1α mediates anoikis resistance via suppression of α5 integrin. Cancer Res 68(24):10113–10120

    Article  CAS  PubMed  Google Scholar 

  91. Whelan KA, Caldwell SA, Shahriari KS, Jackson SR, Franchetti LD, Johannes GJ et al (2010) Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Mol Biol Cell 21(22):3829–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Byun Y, Choi Y-C, Jeong Y, Lee G, Yoon S, Jeong Y et al (2019) MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell Mol Biol Lett. https://doi.org/10.1186/s11658-019-0152-2

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mak CS, Yung MM, Hui LM, Leung LL, Liang R, Chen K et al (2017) MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer 16(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Leskelä S, Leandro-García LJ, Mendiola M, Barriuso J, Inglada-Pérez L, Muñoz I et al (2011) The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18(1):85–95

    Article  PubMed  CAS  Google Scholar 

  95. Prislei S, Martinelli E, Mariani M, Raspaglio G, Sieber S, Ferrandina G et al (2013) MiR-200c and HuR in ovarian cancer. BMC Cancer 13(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cochrane DR, Howe EN, Spoelstra NS, Richer JK (2010) Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol. https://doi.org/10.1155/2010/821717

    Article  PubMed  Google Scholar 

  97. Diaz T, Tejero R, Moreno I, Ferrer G, Cordeiro A, Artells R et al (2014) Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol 109(7):676–683

    Article  CAS  PubMed  Google Scholar 

  98. Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA et al (2014) Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther 22(8):1494–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y et al (2013) miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 114(3):606–615

    Article  CAS  PubMed  Google Scholar 

  100. Lee JW, Park YA, Choi JJ, Lee YY, Kim CJ, Choi C et al (2011) The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol 120(1):56–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biochemistry, Faculty of medicine, Urmia Medical Sciences University for all support provided.

Funding

This research did not receive any specific grant form funding agencies in the public, commercial or not- for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

GB has designed the investigation, NR has divided each author’s responsibilities, AT and FG has prepared the figures & revised the work, SG has managed the article writing & submission, NP has worked on language editing.

Corresponding authors

Correspondence to Attabak Toofani milani or Shiva Gholizadeh-Ghaleh Aziz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This Article does not contain any studies with human participants or animals performed by any of the authors. Thus, consent to participate was not necessary to this review article (Not applicable).

Consent to participate

The present manuscript did not involve humans or animals. Thus, consent to participate was not necessary to this review article (Not applicable).

Consent to publish

The present manuscript did not involve humans or animals. Thus, consent to publish was not necessary to this review article (Not applicable). All authors approved the manuscript. All authors read the manuscript and agreed to have it in the present form. All the authors have participated in collecting data and writing this article, so they express their complete satisfaction for the publication of the article at Molecular Biology Reports.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, G., Raei, N., Toofani milani, A. et al. The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep 48, 6935–6947 (2021). https://doi.org/10.1007/s11033-021-06666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06666-6

Keywords

Navigation