Skip to main content

Advertisement

Log in

Helminth protection against type-1 diabetes: an insight into immunomodulatory effect of helminth-induced infection

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Helminths are the old dirty friends of humans from decades and may live undetected by the immune system for years in the tissues. They have evolved as good experts at subverting the immune system. Despite of their pathogenicity, they provide protection to their host against certain inflammatory diseases such as diabetes by modulating the immune mechanisms. These parasites are extra-cellular and induce Th2 response which triggers the adaptive immune cells as well as innate immune cells to work synergistically allowing Tregs to work in a toll-like receptor-dependent manure. T-helper cells type-2 also secrete certain anti-inflammatory cytokines including IL-4, IL-10, IL-13 and TGF-β which also provide protection against type-1 diabetes. Several helminths such as T. crassiceps, S. venezuelensis, filarial worms, Schistosoma spp. and T. spiralis have been reported to prevent diabetes in mouse models as well as in some clinical trials. Immunomodulatory talent of helminths is receiving greater attention to prevent diabetes. Herein, an attempt has been made to review and highlight the possible immuno-modulatory mechanisms by which helminths provide protection against diabetes. Moreover, this review also emphasizes on the use of helminth-derived molecules or synthetic derivatives of helminth-antigens in clinical trials to overcome rapidly growing autoimmune disorders including diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analyzed in this article.

Code availability

None.

References

  1. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82

    Article  PubMed  Google Scholar 

  2. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Barnighausen T, Davies J, Vollmer S (2018) Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41:963–970

    Article  PubMed  Google Scholar 

  3. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Investig 113:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hubner MP, Shi Y, Torrero MN, Mueller E, Larson D, Soloviova K, Gondorf F, Hoerauf A, Killoran KE, Stocker JT, Davies SJ, Tarbell KV, Mitre E (2012) Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β. J Immunol 188:559–568

    Article  PubMed  Google Scholar 

  5. Klement E, Lysy J, Hoshen M, Avitan M, Goldin E, Israeli E (2008) Childhood hygiene is associated with the risk for inflammatory bowel disease: a population-based study. Am J Gastroenterol 103:1775–1782

    Article  PubMed  Google Scholar 

  6. Saunders KA, Raine T, Cooke A, Lawrence CE (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75:397–407

    Article  CAS  PubMed  Google Scholar 

  7. Peres RS, Chiuso-Minicucci F, da Rosa LC, Domingues A, Zorzella-Pezavento SFG, Franca TGD, Ishikawa LLW, do Amarante AFT, Sartori A (2013) Previous contact with Strongyloides venezuelensis contributed to prevent insulitis in MLD-STZ diabetes. Exp Parasitol 134:183–189

    Article  PubMed  Google Scholar 

  8. Hübner MP, Stocker JT, Mitre E (2009) Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells. Immunology 127:512–522

    Article  PubMed  PubMed Central  Google Scholar 

  9. Espinoza-Jimenez A, Rivera-Montoya I, Cardenas-Arreola R, Moran L, Terrazas LI (2010) Taenia crassiceps infection attenuates multiple low-dose streptozotocin-induced diabetes. Biomed Res Int. https://doi.org/10.1155/2010/850541

    Article  Google Scholar 

  10. Mishra PK, Patel N, Wu W, Bleich D, Gause WC (2013) Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol 6:297–308

    Article  CAS  PubMed  Google Scholar 

  11. Kangralkar VA, Patil SD, Bandivadekar RM (2010) Oxidative stress and diabetes: a review. Int J Pharm Appl 1:38–45

    CAS  Google Scholar 

  12. Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 24:547–553

    Article  PubMed  Google Scholar 

  13. Berbudi A, Surendar J, Ajendra J, Gondorf F, Schmidt D, Neumann AL, Wardani AP, Layland LE, Hoffmann LS, Pfeifer A, Hoerauf A (2016) Filarial infection or antigen administration improves glucose tolerance in diet-induced obese mice. J Innate Immun 8:601–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Versini M, Jeandel P-Y, Bashi T, Bizzaro G, Blank M, Shoenfeld Y (2015) Unraveling the hygiene hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 13:1–16

    Article  CAS  Google Scholar 

  15. Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A (2006) Parasitic worms and inflammatory diseases. Parasite Immunol 28:515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aravindhan V, Mohan V, Surendar J, Rao MM, Ranjani H, Kumaraswami V, Nutman TB, Babu S (2010) Decreased prevalence of lymphatic filariasis among subjects with type-1 diabetes. Am J Trop Med Hyg 83:1336–1339

    Article  PubMed  PubMed Central  Google Scholar 

  17. McSorley HJ, Hewitson JP, Maizels RM (2013) Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 43:301–310

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell RE, Hassan M, Burton BR, Britton G, Hill EV, Verhagen J, Wraith DC (2017) IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Sci Rep 7:1–14

    Article  Google Scholar 

  19. Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33:1439–1449

    Article  CAS  PubMed  Google Scholar 

  20. Abbas RZ, Zaman MA, Sindhu ZUD, Sharif M, Rafique A, Saeed Z, Rehman TU, Siddique F, Zaheer T, Khan MK, Akram MS, Chattha AJ, Fatima U, Munir T, Ahmad M (2020) Anthelmintic effects and toxicity analysis of herbal dewormer against the infection of Haemonchus contortus and Fasciola hepatica in goat. Pak Vet J 40:455–460

    Article  CAS  Google Scholar 

  21. Hübner MP, Thomas Stocker J, Mitre E (2009) Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells. Immunology 127:512–522

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN (2006) Identification of an interleukin (IL)-25–dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203:1105–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh N, Palmer JP (2005) Therapeutic targets for the prevention of type 1 diabetes mellitus. Curr Drug Targets Immune Endocr Metabol Disord 5:227–236

    Article  CAS  PubMed  Google Scholar 

  24. Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A (2009) Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur J Immunol 39:1098–1107

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Smith A, Lammas DA, Behnke JM (2003) The relative involvement of Th1 and Th2 associated immune responses in the expulsion of a primary infection of Heligmosomoides polygyrus in mice of differing response phenotype. J Helminthol 77:133–146

    Article  CAS  PubMed  Google Scholar 

  26. Walsh KP, Brady MT, Finlay CM, Boon L, Mills KH (2009) Infection with a helminth parasite attenuates autoimmunity through TGF-β-mediated suppression of Th17 and Th1 responses. J Immunol 183:1577–1586

    Article  CAS  PubMed  Google Scholar 

  27. Mellanby RJ, Thomas D, Phillips JM, Cooke A (2007) Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 121:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Q, Sundar K, Mishra PK, Mousavi G, Liu Z, Gaydo A, Alem F, Lagunoff D, Bleich D, Gause WC (2009) Helminth infection can reduce insulitis and type 1 diabetes through CD25-and IL-10-independent mechanisms. Infect Immun 77:5347–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osada Y, Yamada S, Nabeshima A, Yamagishi Y, Ishiwata K, Nakae S, Sudo K, Kanazawa T (2013) Heligmosomoides polygyrus infection reduces severity of type 1 diabetes induced by multiple low-dose streptozotocin in mice via STAT6-and IL-10-independent mechanisms. Exp Parasitol 135:388–396

    Article  CAS  PubMed  Google Scholar 

  30. Shimokawa C, Kato T, Takeuchi T, Ohshima N, Furuki T, Ohtsu Y, Suzue K, Imai T, Obi S, Olia A, Izumi T (2020) CD8+ regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat commun 11:1–9

    Article  Google Scholar 

  31. Novak J, Beaudoin L, Park S, Griseri T, Teyton L, Bendelac A, Lehuen A (2007) Prevention of type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J Immunol 178:1332–1340

    Article  CAS  PubMed  Google Scholar 

  32. Turley S, Poirot L, Hattori M, Benoist C, Mathis D (2003) Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198:1527–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blumenfeld HJ, Tohn R, Haeryfar SMM, Liu Y, Savage PB, Delovitch TL (2011) Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice. Clin Exp Immunol 166:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zaccone P, Burton OT, Gibbs S, Miller N, Jones FM, Dunne DW, Cooke A (2010) Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems. J Biomed Biotechnol. https://doi.org/10.1155/2010/795210

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sgouroudis E, Piccirillo CA (2009) Control of type 1 diabetes by CD4+ Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 25:208–218

    Article  CAS  PubMed  Google Scholar 

  36. Tang H, Liang YB, Chen ZB, Du LL, Zeng LJ, Wu JG, Yang W, Liang HP, Ma ZF (2017) Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice. J Cell Biochem 118:4230–4239

    Article  CAS  PubMed  Google Scholar 

  37. Espinoza-Jiménez A, Rivera-Montoya I, Cárdenas-Arreola R, Morán L, Terrazas LI (2010) Taenia crassiceps infection attenuates multiple low-dose streptozotocin-induced diabetes. J Biomed Biotechnol. https://doi.org/10.1155/2010/850541

    Article  PubMed  PubMed Central  Google Scholar 

  38. Espinoza-Jiménez A, De Haro R, Terrazas LI (2017) Taenia crassiceps antigens control experimental type 1 diabetes by inducing alternatively activated macrophages. Mediators Inflamm. https://doi.org/10.1155/2017/8074329

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peon AN, Ledesma-Soto Y, Olguin JE, Bautista-Donis M, Sciutto E, Terrazas LI (2017) Helminth products potently modulate experimental autoimmune encephalomyelitis by downregulating neuroinflammation and promoting a suppressive microenvironment. Mediators Inflamm. https://doi.org/10.1155/2017/8494572

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MASM wrote this manuscript. ZA designed the layout of manuscript. HuRB, AKC and AZ helped in data finding. MN designed the figures of mechanisms. RZA, ZuDS, MI and AA proof-read the manuscript.

Corresponding author

Correspondence to Muhammad Kasib Khan.

Ethics declarations

Conflict of interest

We declare that we have no known conflict of interests, including competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

In this article, no trials were carried out on any human or animal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughal, M.A.S., Khan, M.K., Abbas, Z. et al. Helminth protection against type-1 diabetes: an insight into immunomodulatory effect of helminth-induced infection. Mol Biol Rep 48, 6581–6588 (2021). https://doi.org/10.1007/s11033-021-06663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06663-9

Keywords

Navigation