Skip to main content
Log in

Molecular and allergenic characterization of recombinant tropomyosin from mud crab Scylla olivacea

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Tropomyosin is a major allergen in crustaceans, including mud crab species, but its molecular and allergenic properties in Scylla olivacea are not well known. Thus, this study aimed to produce the recombinant tropomyosin protein from S. olivacea and subsequently investigate its IgE reactivity.

Methods and Results

The tropomyosin gene was cloned and expressed in the Escherichia coli system, followed by SDS-PAGE and immunoblotting test to identify the allergenic potential of the recombinant protein. The 855-base pair of tropomyosin gene produced was found to be 99.18% homologous to Scylla serrata. Its 284 amino acids matched the tropomyosin of crustaceans, arachnids, insects, and Klebsiella pneumoniae, ranging from 79.03 to 95.77%. The tropomyosin contained 89.44% alpha-helix folding with a tertiary structure of two-chain alpha-helical coiled-coil structures comprising a homodimer heptad chain. IPTG-induced histidine tagged-recombinant tropomyosin was purified at the size of 42 kDa and confirmed as tropomyosin using anti-tropomyosin monoclonal antibodies. The IgE binding of recombinant tropomyosin protein was reactive in 90.9% (20/22) of the sera from crab-allergic patients.

Conclusions

This study has successfully produced an allergenic recombinant tropomyosin from S. olivacea. This recombinant tropomyosin may be used as a specific allergen for the diagnosis of allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data deposition (mud crab tropomyosin identification number) is made in the GenBank repository found at https://www.ncbi.nlm.nih.gov/. Other data is available from the authors for non-commercial purposes on reasonable request.

References

  1. Azra MN, Ikhwanuddin M (2016) A review of maturation diets for mud crab genus Scylla brood stock: present research, problems and future perspective. Saudi J Biol Sci 23(2):257–267. https://doi.org/10.1016/j.sjbs.2015.03.011

    Article  PubMed  Google Scholar 

  2. Devi PL, Joseph A (2015) Taxonomy of mud crabs of the genus Scylla (De Haan) from Cochin Backwaters, Kerala India. Indian J Fish 62(3):45–51

    Google Scholar 

  3. Waiho K, Mustaqim M, Fazhan H et al (2015) Mating behavior of the orange mud crab, Scylla olivacea: the effect of sex ratio and stocking density on mating success. Aquac Rep 2:50–57. https://doi.org/10.1016/j.aqrep.2015.08.004

    Article  Google Scholar 

  4. Ikhwanuddin M, Muhd-Farouk H, Memon AJ et al (2014) Sperm viability assessment over elapsing time maintained at 2 degrees C of orange mud crab, Scylla olivacea (Herbst, 1796). Pak J Biol Sci 17(9):1069–1073. https://doi.org/10.3923/pjbs.2014.1069.1073

    Article  CAS  PubMed  Google Scholar 

  5. Lopata AL, Kamath S (2012) Allergy diagnosis: gaps and needs. Curr Allergy Clin Immunol 25(2):60–67

    Google Scholar 

  6. Misnan R, Abdul Rahman NI, Yadzir ZHM et al (2015) Characterization of major allergens of local mud crab (Scylla serrata). Sci Res J 12(1):1. https://doi.org/10.24191/srj.v12i1.5434

    Article  Google Scholar 

  7. Nurul Izzah A, Rosmilah M, Zailatul Hani MY (2015) Identification of major and minor allergens of mud crab (Scylla Serrata). Med Health 10(2):90–97

    CAS  Google Scholar 

  8. Rosmilah M, Shahnaz M, Zailatul HMY et al (2012) Identification of tropomyosin and arginine kinase as major allergens of Portunus pelagicus (blue swimming crab). Trop Biomed 29(3):467–478

    Google Scholar 

  9. Jasim HA, Misnan R, Yadzir ZHM et al (2021) Identification of common and novel major crab allergens in Scylla tranquebarica and the allergen stability in untreated and vinegar-treated crab. Iranian J Allergy Asthma Immunol 20(1):76–87. https://doi.org/10.18502/ijaai.v20i1.5414

    Article  Google Scholar 

  10. Nasrat M, Misnan R, Yadzir ZHM et al (2018) Comparison of protein profiles and allergenicity of different body parts and genders of Scylla paramamosain. Int J Sci Environ Technol 7(5):1759–1765

    Google Scholar 

  11. Misnan R, Murad S, Yadzir ZHM et al (2012) Identification of the major allergens of Charybdis feriatus (red crab) and its cross-reactivity with Portunus pelagicus (blue crab). Asian Pac J Allergy Immunol 30(4):285–293

    CAS  PubMed  Google Scholar 

  12. Leung PSC, Chen YC, Gershwin ME (1998) Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen. J Allergy Clin Immunol 102(5):847–852. https://doi.org/10.1016/s0091-6749(98)70027-2

    Article  CAS  PubMed  Google Scholar 

  13. Liu GM, Cao MJ, Huang YY et al (2010) Comparative study of in vitro digestibility of major allergen tropomyosin and other food proteins of Chinese mitten crab (Eriocheir sinensis). J Sci Food Agric 90(10):1614–1620. https://doi.org/10.1002/jsfa.3988

    Article  CAS  PubMed  Google Scholar 

  14. Rahman AMA, Lopata AL, O’Hehir RE et al (2010) Characterization and de novo sequencing of snow crab tropomyosin enzymatic peptides by both electrospray ionization and matrix-assisted laser desorption ionization QqToF tandem mass spectrometry. J Mass Spectrom 45(4):372–381. https://doi.org/10.1002/jms.1721

    Article  CAS  PubMed  Google Scholar 

  15. Ansotegui IJ, Meliolo G, Canonica GW et al (2020) IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Org J 13(2):100080. https://doi.org/10.1016/j.waojou.2019.100080

    Article  Google Scholar 

  16. Chapman MD, Smith AM, Vailes LD et al (2000) Recombinant allergens for diagnosis and therapy of allergic disease. J Allergy Clin Immunol 106(3):409–418. https://doi.org/10.1067/mai.2000.109832

    Article  CAS  PubMed  Google Scholar 

  17. Larsen JM, Bang-Berthelsen CH, Qvortrup K et al (2020) Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 40(6):881–894. https://doi.org/10.1080/07388551.2020.1772194

    Article  CAS  PubMed  Google Scholar 

  18. Bird JA, Lack G, Perry TT (2015) Clinical management of food allergy. J Allergy Clin Immunol Pract 3(1):1–11. https://doi.org/10.1016/j.jaip.2014.06.008

    Article  PubMed  Google Scholar 

  19. Abramovitch JB, Kamath S, Varese N et al (2013) IgE reactivity of blue swimmer crab (Portunus pelagicus) tropomyosin, Por p 1, and other allergens; cross-reactivity with black tiger prawn and effects of heating. PLoS ONE 8(6):1–13. https://doi.org/10.1371/journal.pone.0067487

    Article  CAS  Google Scholar 

  20. Liang Y-L, Cao M-J, Su W-J et al (2008) Identification and characterisation of the major allergen of Chinese mitten crab (Eriocheir sinensis). Food Chem 111(4):998–1003. https://doi.org/10.1016/j.foodchem.2008.05.023

    Article  CAS  Google Scholar 

  21. Alli SJ, Tsai M (2016) IgE and mast cells in allergic disease. Natl Inst Health 18(5):693–704. https://doi.org/10.1038/nm.2755

    Article  CAS  Google Scholar 

  22. Azemi NFH, Misnan M, Keong BP et al (2020) Reference gene and tropomyosin expression in mud crab Scylla olivacea, Scylla paramamosain and Scylla tranquebarica. Mol Biol Rep 47:9765–9777. https://doi.org/10.1007/s11033-020-05966-7

    Article  CAS  PubMed  Google Scholar 

  23. Keenan CP, Davie PJJ, Mann DL (1998) A revision of the genus Scylla De Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae). Raffles Bull Zool 46(1):217–245

    Google Scholar 

  24. Fazhan H, Waiho K, Quinitio E et al (2020) Morphological descriptions and morphometric discriminant function analysis reveal an additional four groups of Scylla spp. Peer J 8:e8066. https://doi.org/10.7717/peerj.8066

    Article  Google Scholar 

  25. Zailatul HMY, Leecyous B, Amelia Suhana Z (2020) Isolation and cloning of tropomyosin and arginine kinase from tiger prawn Penaeus monodon and blue swimming crab Portunus trituberculatus. J Sci Math Lett 8(2):2019–2021. https://doi.org/10.37134/jsml.vol8.2.5.2020

    Article  Google Scholar 

  26. Jeong KY, Yum HY, Lee IY et al (2004) Molecular cloning and characterization of tropomyosin, a major allergen of Chironomus kiiensis, a Dominant Species of Nonbiting Midges in Korea. Clin Diagn Lab Immunol 11(2):320–324. https://doi.org/10.1128/cdli.11.2.320-324.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonza´lez-Ferna´ndez J, Rodero M, Daschner A (2014) New insights into the allergenicity of tropomyosin: a bioinformatics approach. Mol Biol Rep 2014(41):6509–6517. https://doi.org/10.1007/s11033-014-3534-6

    Article  CAS  Google Scholar 

  28. Wang X, Li L, Xu F et al (2011) Tropomyosin is a nice marker gene for phylogenetic analysis of molluscs. Mol Biol Rep 38(7):4589–4593. https://doi.org/10.1007/s11033-010-0591-3

    Article  CAS  PubMed  Google Scholar 

  29. Cui Y, Zhou Y, Wang Y et al (2013) The Group 10 allergen of Dermatophagoides farinae (Acari: Pyroglyphidae): cDNA cloning, sequence analysis, and expression in Escherichia coli BL21. J Med Entomol 50(1):205–208. https://doi.org/10.1603/me12019

    Article  CAS  PubMed  Google Scholar 

  30. Kumjim S, Jirapongsananuruk O, Piboonpocanun S (2016) Cloning and characterization of recombinant tropomyosin of giant freshwater shrimp M. rosenbergii to determine major allergens causing allergic reactions among shrimp-allergic children. Asian Pacific J Allergy Immunol 34(3):229–235. https://doi.org/10.12932/AP0698

    Article  CAS  Google Scholar 

  31. Piboonpocanun S, Malainual N, Jirapongsananuruk O et al (2006) Genetic polymorphisms of major house dust mite allergens. Clin Exp Allergy 36(4):510–516. https://doi.org/10.1111/j.1365-2222.2006.02464.x

    Article  CAS  PubMed  Google Scholar 

  32. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol 106(2):228–238. https://doi.org/10.1007/s11033-012-2108-8

    Article  CAS  PubMed  Google Scholar 

  33. Leung PSC, Chow WK, Duffey S (1996) IgE reactivity against a cross-reactivity allergen in crustacea and mollusca: evidence for tropomyosin as the common allergen. J Allergy Clin Immunol 98(5):954–961. https://doi.org/10.1016/s0091-6749(96)80012-1

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Matsuo H, Morita E (2006) Cross-reactivity among shrimp, crab and scallops in a patient with a seafood allergy. J Dermatol 33(3):174–177. https://doi.org/10.1111/j.1346-8138.2006.00040.x

    Article  PubMed  Google Scholar 

  35. Rolland JM, Varesa NP, Abramovitch JB et al (2018) Effect of heat processing on IgE reactivity and cross-reactivity of tropomyosin and other allergens of Asia-Pacific mollusc species: identification of novel Sydney rock oyster tropomyosin Sac g 1. Mol Nutr Food Res 62(14):e1800148. https://doi.org/10.1002/mnfr.201800148

    Article  CAS  Google Scholar 

  36. Ayuso R, Reese G, Leong-Kee S et al (2002) Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol 129(1):38–48. https://doi.org/10.1159/000065172

    Article  CAS  PubMed  Google Scholar 

  37. Shafique RH, Inam M, Ismail M et al (2012) Group 10 allergens (tropomyosins) from house-dust mites may cause covariation of sensitization to allergens from other invertebrates. Allergy Rhinol 3(2):74–90. https://doi.org/10.2500/ar.2012.3.0036

    Article  Google Scholar 

  38. Sherson D, Hansen I, Sigsgaard T (1989) Occupationally related respiratory symptoms in trout-processing workers. Allergy 44(5):336–341. https://doi.org/10.1111/j.1398-9995.1989.tb00455.x

    Article  CAS  PubMed  Google Scholar 

  39. Jeebhay MF, Robins TG, Seixas N et al (2005) Environmental exposure characterization of fish processing workers. Ann Occup Hyg 49(5):423–437. https://doi.org/10.1093/annhyg/meh113

    Article  CAS  PubMed  Google Scholar 

  40. James JK, Pike DH, Khan IJ et al (2018) Structural and dynamic properties of allergen and non-allergen forms of tropomyosin. Structure 26(7):997–1006. https://doi.org/10.1016/j.str.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pekar J, Ret D, Untersmayr E (2018) Stability of allergens. Mol Immunol 100:14–20. https://doi.org/10.1016/j.molimm.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verhoeckx KCM, Vissers YM, Baumert JL et al (2015) Food processing and allergenicity. Food Chem Toxicol 80:223–240. https://doi.org/10.1016/j.fct.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  43. Jeong KY, Lee H, Lee SK et al (2007) Molecular cloning and the allergenic characterization of tropomyosin from Tyrophagus putrescentiae. Protein Pept Lett 14(5):431–436. https://doi.org/10.2174/092986607780782777

    Article  CAS  PubMed  Google Scholar 

  44. Jeong KY (2004) Characterization of allergenic properties of German cockroach tropomyosin using recombinant proteins. Anim Cells Syst 8:73–73

    Google Scholar 

  45. Asturias JA, Gómez-Bayón N, Arilla MC et al (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a Cross-reactive Allergen. J Immunol 162(7):4342–4348

    CAS  PubMed  Google Scholar 

  46. Kamath SD, Rahman AMA, Komoda T et al (2013) Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chem 141(4):4031–4039. https://doi.org/10.1016/j.foodchem.2013.06.105

    Article  CAS  PubMed  Google Scholar 

  47. Faisal M, Vasiljevic T, Donkor ON (2019) Effects of selected processing treatments on antigenicity of banana prawn (Fenneropenaeus merguiensis) tropomyosin. Int J Food Sci Technol 54(1):183–193. https://doi.org/10.1111/ijfs.13922

    Article  CAS  Google Scholar 

  48. Koeberl M, Kamath SD, Saptarshi SR et al (2014) Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from king prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics. J Immunol Methods 415:6–16. https://doi.org/10.1016/j.jim.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  49. Asnoussi A, Aibinu IE, Gasser RB et al (2017) Molecular and immunological characterisation of tropomyosin from Anisakis pegreffii. Parasitol Res 116(12):3291–3301. https://doi.org/10.1007/s00436-017-5642-4

    Article  PubMed  Google Scholar 

  50. Krieger J, Raming K, Knipper M et al (1990) Cloning, sequencing and expression of locust tropomyosin. Insect Biochem 20(2):173–184. https://doi.org/10.1016/0020-1790(90)90010-R

    Article  CAS  Google Scholar 

  51. Ayuso R, Lehrer SB, Reese G (2002) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (Tropomyosin). Int Arch Allergy Immunol 127(1):27–37. https://doi.org/10.1159/000048166

    Article  CAS  PubMed  Google Scholar 

  52. Jeong KY, Lee J, Lee IY et al (2003) Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy Eur J Allergy Clin Immunol 58(10):1059–1063. https://doi.org/10.1034/j.1398-9995.2003.00167.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Higher Education Malaysia (MOE) for the financial funding of this research through the Fundamental Research Grant Scheme (FRGS 2016-0085-102-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosmilah Misnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All authors have read, commented on, and approved the manuscript.

Ethical approval

Compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6661_MOESM1_ESM.tif

IgE immunoblotting of crude extract of Scylla olivacea. Lane M, Vivantis Chromatein Prestained Protein Ladder (Vivantis Technologies, USA); lane N, immunoblot using serum from a non-allergic individual; and lane B, blank; lanes 1-22, immunoblots showing binding of IgE from different serum samples.Supplementary file1 (TIF 1669 kb)

11033_2021_6661_MOESM2_ESM.tif

Agarose gel electrophoresis of PCR re-amplification of tropomyosin gene of S. olivacea (o). Marker using 100 bp DNA ladder (Thermo Scientific, USA). Supplementary file2 (TIF 748 kb)

11033_2021_6661_MOESM3_ESM.tif

Overexpression of recombinant tropomyosin protein from S. olivacea. S; soluble, IS; insoluble. Supplementary file3 (TIF 5958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azemi, N.F.H., Misnan, R., Keong, B.P. et al. Molecular and allergenic characterization of recombinant tropomyosin from mud crab Scylla olivacea. Mol Biol Rep 48, 6709–6718 (2021). https://doi.org/10.1007/s11033-021-06661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06661-x

Keywords

Navigation