Skip to main content
Log in

Bidirectional promoters: an enigmatic genome architecture and their roles in cancers

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bidirectional promoters are the transcription regulatory regions of genes positioned head-to-head on opposite strands. Specific sequence signals, chromatin modifications and three-dimensional structures of the transcription site facilitate the unconventional yet tightly regulated transcription proceeding in both directions from these promoters. Mutations or aberrant epigenetic changes can lead to abnormal enhanced or reduced expression from either of the bidirectionally transcribed genes resulting in tumorigenesis. Moreover, bidirectionally transcribed genes might also contribute towards the immune regulation in tumor microenvironment. In this review, we aimed to expound the characteristic features of bidirectional promoters alongside their transcriptional regulations, and ultimately, the association of these enigmatic genomic elements in different cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peng FY, Hu Z, Yang RCJ (2016) Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants. Bio Genom 17(1):1–16

    CAS  Google Scholar 

  2. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109(7):807–809

    Article  CAS  PubMed  Google Scholar 

  3. Carninci P et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635

    Article  CAS  PubMed  Google Scholar 

  4. Trinklein ND et al (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14(1):62–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y et al (2014) Transcriptional regulation and spatial interactions of head-to-head genes. BMC Genom 15(1):1–9

    Article  Google Scholar 

  6. Jangid RK et al (2018) Bidirectional promoters exhibit characteristic chromatin modification signature associated with transcription elongation in both sense and antisense directions. BMC Genom 19(1):313–313

    Article  CAS  Google Scholar 

  7. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070

    Article  CAS  PubMed  Google Scholar 

  8. Yang MQ, Elnitski LL (2008) Diversity of core promoter elements comprising human bidirectional promoters. BMC Genom 9(2):1–8

    Google Scholar 

  9. Shu J et al (2006) Silencing of bidirectional promoters by DNA methylation in tumorigenesis. Can Res 66(10):5077–5084

    Article  CAS  Google Scholar 

  10. Baylln SB et al (1997) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  Google Scholar 

  11. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  CAS  PubMed  Google Scholar 

  12. Compagni A, Christofori G (2000) Recent advances in research on multistage tumorigenesis. Br J Cancer 83(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wakano C et al (2012) The dual lives of bidirectional promoters. Biochem Biophys Acta 1819(7):688–693

    CAS  PubMed  Google Scholar 

  14. Venters BJ, Pugh BF (2009) How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol 44(2–3):117–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehouse I et al (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450(7172):1031–1035

    Article  CAS  PubMed  Google Scholar 

  16. Yadon AN et al (2010) Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol Cell Biol 30(21):5110–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei W et al (2011) Functional consequences of bidirectional promoters. Trends Genet 27(7):267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  19. Li YY et al (2006) Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput Biol 2(7):e74

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heikkilä P, Soininen R, Tryggvason K (1993) Directional regulatory activity of cis-acting elements in the bidirectional alpha 1 (IV) and alpha 2 (IV) collagen gene promoter. J Biol Chem 268(33):24677–24682

    Article  PubMed  Google Scholar 

  21. Xu C, Chen J, Shen B (2012) The preservation of bidirectional promoter architecture in eukaryotes: what is the driving force? BMC Syst Biol 6(1):S21

    Article  PubMed  PubMed Central  Google Scholar 

  22. He K, et al (2020) Compact bidirectional promoters for dual-gene expression in a sleeping beauty transposon. Int J Mol Sci 21(23).

  23. Koyanagi KO et al (2005) Comparative genomics of bidirectional gene pairs and its implications for the evolution of a transcriptional regulation system. Gene 353(2):169–176

    Article  CAS  PubMed  Google Scholar 

  24. Seila AC et al (2009) Divergent transcription: a new feature of active promoters. Cell Cycle 8(16):2557–2564

    Article  CAS  PubMed  Google Scholar 

  25. Hori Y et al (2018) Important cardiac transcription factor genes are accompanied by bidirectional long non-coding RNAs. BMC Genom 19(1):967

    Article  CAS  Google Scholar 

  26. Mahpour A et al (2018) A methyl-sensitive element induces bidirectional transcription in TATA-less CpG island-associated promoters. PLoS ONE 13(10):e0205608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang S, Sleight S, Sauro H (2012) Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucl Acids Res 41.

  28. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373

    Article  CAS  PubMed  Google Scholar 

  30. Engström PG et al (2006) Complex loci in human and mouse genomes. PLoS Genet 2(4):e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Carrozza MJ et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592

    Article  CAS  PubMed  Google Scholar 

  32. Lickwar CR et al (2009) The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency. PLoS ONE 4(3):e4886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lainé J-P et al (2009) A physiological role for gene loops in yeast. Genes Dev 23(22):2604–2609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23(22):2610–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y-Q et al (2010) Sorting out inherent features of head-to-head gene pairs by evolutionary conservation. BMC Bioinformatics 11(11):1–9

    CAS  Google Scholar 

  36. Chen Y et al (2021) Pan-cancer analysis of head-to-head gene pairs in terms of transcriptional activity co-expression and regulation. Front Genet 11:560997–560997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  38. Yang MQ, Koehly LM, Elnitski LL (2007) Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes. PLoS Comput Biol 3(4):e72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu Z et al (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Preker P et al (2011) PROMoter uPstream transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res 39(16):7179–7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ntini E et al (2013) Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 20(8):923

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y et al (2016) Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters. Nat Genet 48(9):984–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uesaka M et al (2014) Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genom 15(1):35

    Article  Google Scholar 

  44. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  45. Li D et al (2019) PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine 45:124–138

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chervona Y, Costa M (2012) Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2(5):589–597

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Baldwin RL et al (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60(19):5329–5333

    CAS  PubMed  Google Scholar 

  48. Xu C et al (1997) Isolation and characterisation of the NBR2 gene which lies head to head with the human BRCA1 gene. Hum Mol Genet 6:1057–1062

    Article  CAS  PubMed  Google Scholar 

  49. Amatya VJ et al (2005) TP53 promoter methylation in human gliomas. Acta Neuropathol 110(2):178–184

    Article  CAS  PubMed  Google Scholar 

  50. Mahmoudi S et al (2011) WRAP53 promotes cancer cell survival and is a potential target for cancer therapy. Cell Death Dis 2(1):e114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Drak Alsibai K, et al (2019) High positive correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF gene cluster overexpression in multi-tumor types suggest deregulated activation of an ANRIL-ARF bidirectional promoter. Noncoding RNA 5(3).

  52. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ying J et al (2006) Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20(6):1173–1175

    Article  CAS  PubMed  Google Scholar 

  54. Zhang P et al (2004) CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cai Z, Chehab NH, Pavletich NP (2009) Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell 35(6):818–829

    Article  CAS  PubMed  Google Scholar 

  56. Voth H et al (2009) Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma. BMC Mol Biol 10:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Voth H et al (2007) Identification of DEIN, a novel gene with high expression levels in stage IVS neuroblastoma. Mol Cancer Res 5(12):1276–1284

    Article  CAS  PubMed  Google Scholar 

  58. Jones A et al (2013) Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med 10(11):e1001551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Xu L et al (2014) An emerging role of PARK2 in cancer. J Mol Med 92(1):31–42

    Article  CAS  PubMed  Google Scholar 

  60. Juszczynski P et al (2006) BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 26(14):5348–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Y et al (2015) The gene pair PRR11 and SKA2 shares a NF-Y-regulated bidirectional promoter and contributes to lung cancer development. Biochem Biophys Acta 1849(9):1133–1144

    CAS  PubMed  Google Scholar 

  62. Su W-Y et al (2012) Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res 22(9):1374–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Souza Santos E et al (2008) Silencing of LRRC49 and THAP10 genes by bidirectional promoter hypermethylation is a frequent event in breast cancer. Int J Oncol 33(1):25–31

    PubMed  Google Scholar 

  64. Barger CJ et al (2021) Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer. Elife 10:e55070

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Y et al (2017) The PRR11-SKA2 bidirectional transcription unit is negatively regulated by p53 through NF-Y in lung cancer cells. Int J Mol Sci 18(3):534

    Article  PubMed Central  CAS  Google Scholar 

  66. Wang Y et al (2017) MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc Natl Acad Sci 114(3):474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen P-Y et al (2007) Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol 8(1):1–14

    Article  CAS  Google Scholar 

  68. Wright KL et al (1995) Coordinate regulation of the human TAP1 and LMP2 genes from a shared bidirectional promoter. J Expr Med 181(4):1459–1471

    Article  CAS  Google Scholar 

  69. Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383

    Article  CAS  PubMed  Google Scholar 

  70. Uchiumi F et al (2014) Implication of bidirectional promoters containing duplicated GGAA motifs of mitochondrial function-associated genes. AIMS Mol Sci 1(1):1–26

    Article  Google Scholar 

  71. Scatena R, Bottoni P, Giardina B (2012) Advances in mitochondrial medicine, vol 942. Springer, Berlin

    Google Scholar 

  72. Zong W-X, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61(5):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MAAKK conceived and planned the review. SSA, NSNS, RRT and MAAKK wrote the draft manuscript. ASK did the proofreading and critical revision of the draft. All authors contributed towards the final version of the manuscript.

Corresponding author

Correspondence to Md. Abdullah-Al-Kamran Khan.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.S., Samia, N.S.N., Khan, A.S. et al. Bidirectional promoters: an enigmatic genome architecture and their roles in cancers. Mol Biol Rep 48, 6637–6644 (2021). https://doi.org/10.1007/s11033-021-06612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06612-6

Keywords

Navigation