Skip to main content
Log in

New microsatellite loci for estimating genetic diversity and structure in Octopus hubbsorum from Nayarit, México

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Octopus hubbsorum Berry, 1953 is the most important species for commercial fishing in the Mexican Pacific. However, there is a lack of information regarding population structure that could have important management implications. We tested 44 microsatellite loci in O. hubbsorum by cross-amplification from O. bimaculatus.

Methods and results

Genetic diversity and structure was tested over 30 octopus sampled from Santa Cruz de Miramar (Nayarit, México). A total of 11 loci were successfully amplified. All loci were polymorphic with the number of effective alleles ranging from 2.13 to 23.14, while three loci significantly deviated from Hardy-Weinberg equilibrium. No significant LD was observed between pairs of loci (P ≥ 0.05). The application of the new markers in a O. hubbsorum population from Santa Cruz de Miramar Nayarit, México, did not showed Wahlund or isolate breaking effects due to the mixing of distinct populations.

Conclusions

The loci were useful to estimate levels of pairwise relatedness and to discard the presence of recent demographic bottlenecks in the population. We consider that eight microsatellites are adequate from the 11 amplified loci

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. CONAPESCA 2018 Anuario estadístico de acuacultura y pesca (2013) Mazatlán: Comisión Nacional de Acuacultura y Pesca. https://www.conapesca.gob.mx/work/sites/cona/dgppe/2018/ANUARIO_2018.pdf

  2. Domínguez-Contreras JF, Munguía-Vega A, Ceballos-Vázquez BP et al (2018) Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico. PeerJ 6:e4295. https://doi.org/10.7717/peerj.4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dueñas-Romero JJ, Granados-Amores J, Palacios-Salgados DS et al (2020) Diversity and population genetic structure of Octopus hubbsorum. Mar Freshw Res. https://doi.org/10.1071/MF193

    Article  Google Scholar 

  4. Jereb P, Roper CFE, Norman MD, Finn JK (2016) Cephalopods of the world an annotated and illustrated catalogue of cephalopod species known to date. Food and Agriculture Organization of the United Nations, Roma

    Google Scholar 

  5. López-Uriarte E, Ríos-Jara E, Pérez-Peña M (2005) Range extension for Octopus hubbsorum (Mollusca: Octopodidae) in the Mexican Pacific. Bull Mar Sci 77:171–175

    Google Scholar 

  6. Domínguez-Contreras JF, Ceballos-Vázquez BP, Hochberg FG, Arellano-Martínez M (2013) A new record in a well-established population of Octopus hubbsorum (Cephalopoda: Octopodidae) expands its known geographic distribution range and maximum size. Am Malacol Bull 31:95–99. https://doi.org/10.4003/006.031.0122

    Article  Google Scholar 

  7. Diario Oficial de la Federación (DOF) (2017) Acuerdo por el que se modifica el similar por el que se establece la veda temporal y tallas mínimas de captura para la pesca de las especies de pulpo en Bahía de los Ángeles, Baja California, publicado el 1 de junio de 2016, para considerar como zona de veda la Reserva de la Biosfera Bahía de los Ángeles, Canales de Ballenas y de Salsipuedes, respecto del pulpo café (Octopus bimaculatus) y pulpo verde (Octopus hubbsorum). http://www.dof.gob.mx/nota_detalle.php?codigo=5503748&fecha=07/11/2017. Accessed 01 April 2020

  8. Castellanos-Martínez S (2008) Reproducción del pulpo Octopus bimaculatus Verrill, 1883 en Bahía de los Ángeles, Baja California. Master thesis, Instituto politécnico Nacional, México

  9. De Luca D, Catanese G, Fiorito G, Procaccini G (2015) A new set of pure microsatellite loci in the common octopus Octopus vulgaris Cuvier, 1797 for multiplex PCR assay and their cross-amplification in O. maya Voss & Solis Ramirez, 1996. Concerv Genet Resour 7:299–301. https://doi.org/10.1007/s12686-014-0365-7

    Article  Google Scholar 

  10. Domínguez-Contreras JF, Munguía-Vega A, Ceballos-Vázquez BP et al (2014) Characterization of microsatellite loci from two-spotted octopus Octopus bimaculatus Verrill 1883 from pyrosequencing reads. Conserv Genet Resour. https://doi.org/10.1007/s12686-013-01

    Article  Google Scholar 

  11. Amos W, Hoffman JI, Frodsham A et al (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x

    Article  CAS  Google Scholar 

  12. Oosterhout CV, Hutchinson WF, Wills M, Shipley DP P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  13. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

    Article  Google Scholar 

  14. Rice RW (1989) Analyzing tables of statistical tests. Evolution 43:223–225. https://doi.org/10.2307/2409177

    Article  PubMed  Google Scholar 

  15. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x

    Article  PubMed  Google Scholar 

  17. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:https://doi.org/10.1111/j.1752-4571.2009.00104.x

    Article  PubMed  Google Scholar 

  18. Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1:462–474

    Article  PubMed  PubMed Central  Google Scholar 

  19. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. https://doi.org/10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  20. Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. https://doi.org/10.1073/pnas.91.8.3166

    Article  PubMed  PubMed Central  Google Scholar 

  21. Piry Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. https://doi.org/10.1093/jhered/90.4.502

    Article  Google Scholar 

  22. Pliego-Cárdenas R, Hochberg FG, García De León FJ, Barriga-Sosa De Los Angeles, I, (2014) Close genetic relationships between two American Octopuses: Octopus hubbsorum Berry, 1953, and Octopus mimus Gould, 1852. J Shellfish Res 33:293–303. https://doi.org/10.2983/035.033.0128

    Article  Google Scholar 

  23. Cabranes C, Fernández-Rueda P, Martínez JL (2008) Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12–16. https://doi.org/10.1093/icesjms/fsm178

    Article  Google Scholar 

  24. Kang JH, Kim YK, Jung-Youn Park et al (2012) Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China. Mol Biol Rep 39:8277–8286. https://doi.org/10.1007/s11033-012-1675-z

    Article  CAS  PubMed  Google Scholar 

  25. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623. https://doi.org/10.1093/jhered/esn048

    Article  CAS  PubMed  Google Scholar 

  26. Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19. https://doi.org/10.1093/jhered/esu062

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Consejo Nacional de Ciencia y Tecnología (CONACyT) and Posgrado en Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Nayarit and Secretaria de Investigación y Posgrado-Instituto Politécnico Nacional for the support provided to develop this project. JGA, AMV and FJGR are fellows of Sistema Nacional de Investigadores-Consejo Nacional de Ciencia y Tecnología (SNI-CONACyT). FJGR is fellow of Comisión de Operación y Fomento de Actividades Académicas-Instituto Politécnico Nacional (COFAA-IPN) and Estímulos al Desempeño de los Investigadores-Instituto Politécnico Nacional (EDI-IPN).

Funding

This study was funded by Fondo Ciencia Básica CONACyT (Grant No. 253315) and Secretaría de Investigación y Posgrado-Instituto Politécnico Nacional (SIP-IPN, SIP-20180539).

Author information

Authors and Affiliations

Authors

Contributions

All authors of the paper have directly participated in the planning, execution, and analysis of this study.

Corresponding author

Correspondence to Francisco Javier García-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

All authors have approved their participation in this paper.

Consent for publication

All authors have read and approved the final version submitted.

Ethical approval

Octopus hubbsorum is not an endangered or a protected species in the area sampled. Sampling activities were not performed at locations where specific permission is required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús Dueñas-Romero, J., Domínguez-Contreras, J.F., Granados-Amores, J. et al. New microsatellite loci for estimating genetic diversity and structure in Octopus hubbsorum from Nayarit, México. Mol Biol Rep 48, 7007–7012 (2021). https://doi.org/10.1007/s11033-021-06601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06601-9

Keywords

Navigation